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General context

> We observe data y € C¥, related to the original image & € CV
through:
y=HzZ +w, H e CON

» Objective: Restore the unknown original image @ from H and y.
Examples of complex-valued inverse problems:

~ Spectral analysis

~> Nuclear Magnetic Resonance
~ Mass Spectroscopy
~

Magnetic Resonance Imaging
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General context

Penalized optimization problem
minimize (F(xz) = ®(Hx —y)+ ¥(x)), (1)
xeCN
where

® :C9 > R ~ Data fidelity term, related to noise model

U : CN — R ~ Regularization term, related to a priori assumptions

Considered penalization model:

S
U(@) = Y vsllollz — ) + |2l

s=1

e Forevery se{1,...,5}, ¥s: R—> R, vy, e CN, ¢, €C,
e c€[0,400).
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Examples of regularization functions

lo-f1 functions: Asymptotically linear with a quadratic behavior near 0.

Example: (Vt € R), 1(t) = A\s(1/02 + 12 — 05), As > 0, 85 >0
Limit case: When 53 — 0, ¥s(t) = Aslt] (Zl penalty).
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Examples of regularization functions

lo-£1 functions: Asymptotically linear with a quadratic behavior near 0.
lo-Ly functions: Asymptotically constant with a quadratic behavior near 0.

Example: (Vt € R), ¥s(t) = \s(202 +t2)71#2, Ay > 0, d5 > 0
Limit case: When 0; — 0, 15(t) — 0 if ¢ = 0, A; otherwise (¢y penalty).
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Examples of functions (5)1<s<g

)\_:11,/15 (t) Type Name
[t] — &5 log(|t]/ds + 1) la —
P -
t if [t] < 85
lo — ¢ Hub
§ {265\t| — 6? otherwise 2 1 uber
<
S log(cosh(t)) Ly — 01 Green
(1+t2/82)ms/2 1 Oy — Ly,
1 — exp(—t2/(262)) Ly — £ Welsch
t2/(26§ +t2) Ly — Lo Geman
« -McClure
1) — 2 PRSI <
g I-(-t /(663)) if1t] = V635 Lo — Lo Tukey biweight
4 1 otherwise
2 tanh(t2/(262)) s — € Hyberbolic
tangent
log(1 + t2/5§) Ly — log Cauchy
1 —exp(l — (1 +t2/(262))rs/2) Ly — Ly — Lo Chouzenoux

(As,6s) e]0v+°0[2v Ks € [1,2]

CEA meeting

3-12-2015 8 /34



Examples of functions (¢;)i<s<s

t

Yolt) = (1+ 5)V2 =1, 4 (t) =log (14 &), ts(t) = 1 — exp(— o).
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Preliminaries

Notation:

» For every vector x € CN,

o i € RY (resp. ;1 € RY) denotes the vector of real (resp. imaginary)
parts of the components of .

e 7 € RV denotes the “concatenated” vector z = [z}, x;|" where
()T is the transpose operation.

» If Fis a function from C¥ to C, we define ﬁNthe function of real
variables associated with F, i.e. (Vz € CV) F(z) = F(x).
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Preliminaries

Notation:

» For every vector x € CN,

o i € RY (resp. ;1 € RY) denotes the vector of real (resp. imaginary)
parts of the components of .

e 7 € RV denotes the “concatenated” vector z = [z}, x;|" where

()T is the transpose operation.

» If Fis a function from CV to C, we define ﬁNthe function of real
variables associated with F, i.e. (Vz € CV) F(z) = F(x).
Complex-valued differential calculus:

According to Wirtinger's calculus, the derivative of F' with respect to the
conjugate of its variable is formally defined as

(Ve e C) VF(x) = % (8;;(? + zagéf)> .
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Assumptions

S
F(z) = o(Hz —y) + Y ts(vl'e - ) + 5 ||

Assumption 1:
(i) @ is differentiable.
(ii) For every s € {1,...,S}, 1, is differentiable and lim;_,q 1), (t)/t € R.
t#£0
Assumption 2: One of the following conditions holds:
e & and (¢s)1<s<s are lower bounded functions and £ > 0.

e (i) ®is coercive (i.e. lim 400 P(2) = +00).

(i) (¥s)1<s<s are lower bounded functions.
(iii) H is injective.

e (i) @ is coercive.
(ii) Forevery s € {1,...,S}, v is coercive.
(iii) Ker HN (span{vl, .,vsh)t ={0}
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Properties

Complex-valued derivative of F

Under Assumption 1, for all z € CV,

1
VF(z) = H'VO(Hz — y) + ;V Diag (b(z)) (Ve —c) + =z,
with
e V=[vy,...,v5] € CV*5,
o b(z) = (ws(lvi'z — c4]))1<s<s,

Q;Z)s(a) .
o (Vse{l,---,S))(Va €R) ws(a)={ @ Fa#0

limy_y0 ¥ (t)/t otherwise.
t#0
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Properties

Complex-valued derivative of F

Under Assumption 1, for all z € CV,

1
VF(z) = H'Ve(Hz — y) + 5V Diag (b()) (V'z — c) + ‘a,
with
e V=[vy,...,v5] € CV*5,

* b(x) = (Ws(‘v}s{%‘ — ¢s]))1<s<Ss

¥s(a) ifa#0
o (Vse{l,---,5})(Va € R) ws(a) a
limtt;)(? Ys(t)/t  otherwise.

Existence of minimizers

Under Assumptions 1 and 2, Problem (1) has a solution.

v
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Majorize-Minimize principle [Hunter04]

Objective: Find £ € Argmin F’

For all «’, let ©(., ') a tangent majorant of F at o' i.e.,

MM algorithm:

(Vjefl,....J}

/Tt € Argmin, O(x, z7)

ey



Quadratic majorization
Assumption 3:

(i) @ has a S-Lipschitzian derivative with § € (0, +00), i.e.
(Vz € C¥)(VZ € C9)  |V&(2) — V()| < Bllz — 2|

(ii) Forevery s € {1,...,S}, 1s(/7) is concave on [0, +00).

(iii) There exists @ € [0, +00) such that
(Vs e {l,...,S}) (Vt € (0,400)) 0 < ws(t) < @.

Proposition

If, for every ' € CV, A(z') = pH"H + V Diag (b(z')) V! + eIy with
p € [28,400), then

O(x,z') = F(z') + 2Re {VF(:I:’)H(ac — :I:/)} + %(:1: —z\ Az (x — )

is a quadratic tangent majorant of F' at x’.

v
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Proposed algorithm
MM Subspace algorithm:

Tp+1 = T + Dyuy

(Vk > 0)
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Proposed algorithm
MM Subspace algorithm:

Tyl = T + Dyug (Vk‘ = 0)

e D; € CN*M: matrix of M directions

Example: Memory gradient Dy, = [~V F(xk), x — Tk_1]
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Proposed algorithm
MM Subspace algorithm:

Tyl = T + Dyuy (Vk > 0)

o D € CN*M: matrix of M directions
e u; € CM: multivariate stepsize resulting from MM minimization of
fr(u): u— F(xx + Dyu)
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Proposed algorithm
MM Subspace algorithm:
Tyl = T + Djuy (Vk > 0)

o D € CN*M: matrix of M directions

e u; € CM: multivariate stepsize resulting from MM minimization of
fe(u): u— F(xp + Dyu)

MM minimization in the subspace:

u) = 0
k ’
{ wl € Argming Uy (u, u), HYvjed{l,...J})

with, for all u € CM, ﬁk(u,ui) = O(x + Dyu, x) + Dkufc)
quadratic tangent majorant of fj at ui with Hessian:

B} = D' A(z), + Dyu)) Dy,
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Proposed algorithm

Complex-valued 3MG algorithm

o GCN, x_1=0

For all k =0,...
Dk — [—VF(mk),ack - ack_l]
u% =0,

Forallj=1,...,J
B]Jc_1 :.I?,I;IA(CBIC .—i-leui_l)Dk, .
uwl, =uj  —2(Bi ) DIVF(z) + Dyui ),
| Tpr1 =T+ Dkui
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Proposed algorithm

Complex-valued 3MG algorithm

o G(CN, x_1=0

For all k =0,...
Dk — [—VF(mk),:I:k - ack_l]
u% =0,

For all j =1,...,J
{ B! DHA(ack + Dyul "Dy,
u, =u)  — 2(BJ Yt DIV F (2, + Dyul ),
| Tpr1 =T+ Dkuk

~» Equivalent to 3MG algorithm for minimizing real-valued function F,
taking

=~  |Dpr —Dygg INx2M
Dy = [Dk,l Dy r €R

B 0]



Convergence result

Assumptions
o
o
o

e Assumption 4: F' satisfies the Kurdyka-tojasiewicz inequality, i.e.
for every & € C" and every bounded neighborhood B of &, there
exist constants k > 0, ¢ > 0 and # € [0, 1) such that

IVE ()| > |F(2) - F&)),

for every @ € B such that |F(x) — F(&)| < C.
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Convergence result

Proposition

Assume that there exists a € (0, 4+00) such that (V& € CV) A(x) — aly
is a positive semi-definite matrix. Then, under Assumptions 1-4, the
3MG algorithm generates a sequence ()ren converging to a critical
point of F'. Moreover, (F(wk))keN is a nonincreasing sequence and
(zk)ren has a finite length in the sense that

—+00

D lEpp1 — @l < +oo.
k=0

Finally, there exists n € (0, +00) such that, if

F(xo) < n+inf F,

then (@) )ken converges to a global solution to Problem (1).
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© Application to CS-PMRI
@ Model

@ Simulation results
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Parallel Magnetic Resonance Imaging
Objective:
@ Reduce the acquisition time

@ Maintain good image quality

Principle:

@ k-space subsampling

@ Multiple receiver coils
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Parallel Magnetic Resonance Imaging
Objective:
@ Reduce the acquisition time

@ Maintain good image quality

Principle:

@ k-space subsampling

@ Multiple receiver coils

Acquisition model: (V¢ € {1,...,L}) di=XFS/p+wy
» Ve {l,... L}, S, € CE*K: diagonal sensitivity matrix,
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Parallel Magnetic Resonance Imaging
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Principle:

@ k-space subsampling

@ Multiple receiver coils
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Parallel Magnetic Resonance Imaging
Objective:
@ Reduce the acquisition time

@ Maintain good image quality

Principle:
@ k-space subsampling

@ Multiple receiver coils

Acquisition model: (V¢ € {1,...,L}) dy=3FS/p+wy
» Ve {l,... L}, S € CE*K: diagonal sensitivity matrix,
» F e CE*K. 2D discrete Fourier transform,
> ¥ € {0, 1}L%JXK: subsampling matrix
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Parallel Magnetic Resonance Imaging
Objective:
@ Reduce the acquisition time

@ Maintain good image quality

Principle:

@ k-space subsampling

@ Multiple receiver coils

Acquisition model: (V¢ € {1,...,L}) dy=XFS/p+ wy
» Ve {l,... L}, S € CE*K: diagonal sensitivity matrix,
» F e CE*K. 2D discrete Fourier transform,

» ¥ € {0, 1}L%JXK: subsampling matrix

K o . .
» V0 e{l,...,L}, wy, € CL%]: realization of circular complex Gaussian
noise with zero-mean and covariance matrix A,.
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Variational formulation

L
inimi SFSip—dy|>
minimize (ﬁ;ll oo — dyl%

S
Lt Z%(Iffﬂ))
s=1

= = = £ Dar
CEA meeting



Variational formulation

mil;ierIIElize (Z |IXFSip — dgHA 1+ Zlbs (If2p)) )

/=1

- minimize (ZHEFSgE:I: dgHA_1+Zl/JS (IfBEx|) + H:L'H2>

xzeCN -
where E € CE*N allows us to set the background pixels to zero.

T



Variational formulation
L S
minimize (Y [|EFSpp — dell} 1 + > ¢s(|fF o))
peE =1 LR

L S

e . g

< e (YIS ES - d o+ Y (B + 5ol
x /= s=1

—_

S
< minimize (‘IJ(H:c —y) + Z¢s(|”§m —csl) + gHiL'HQ)

N
xeC s—1

with ® squared Hermitian norm of C? with Q = L|K/R] and
e H=[H/,... ,H]|", (We{l,....L}) H,=A,;'’SFS,E
cy=1lyl.....y]]", (Ve {l....L}) ye=A;""dy

L (vs)1<s<S = (EHfs)1<s<Sv (Cs)1<s<5' =0

T



Simulation settings

» 3 Tesla Siemens Trio magnet with L = 32 channel receiver coil

» Reconstruction of sagittal views of a 3D anatomical image with
256 x 256 pixels

» Reference image p defined as the reconstruction result from a
non-accelerated acquisition (R = 1)

\4

Different sampling patterns with R = 5 acceleration factor

» Circular complex Gaussian noise with zero-mean and covariance
matrices Ay = U2ILK/RJ, te{l,...,L}, 0> =6 x 10°

> (fs)1<s<s (S = K) corresponds to an orthonormal wavelet basis
using Symmlet filters of length 10 and 3 resolution levels
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Effect of the sensitivity matrices

Moduli of the images corresponding to (S¢p)i<e<r for 8 channels out of 32.

e siao0l5 23 /%



Different types of subsampling

Uniform

Radial Regular
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Simulation results

SNR (dB)

‘ Sampling pattern ‘ Slide No 70 ‘ Slice No 82 ‘ Slice No 121
Polyl 21.15 19.96 20.89
Poly2 20.32 19.34 20.07
Poly3 19.43 18.53 19.18
Poly4 18.47 17.50 18.35
Poly5 17.67 16.95 17.52
Uniform 21.02 19.71 20.68
T 20.46 19.31 20.08
Radial 20.27 19.20 20.01
Spiral 20.35 19.17 20.03
Regular 19.18 18.13 18.66

SNR values for various subsampling strategies using 3MG and {2 - {1 regularization

3-12-2015
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Simulation results

Slice No 70: Moduli of the original image p (a) and the reconstructed one (b) with
SNR = 21.15 dB using Polyl sampling, 3MG algorithm and {2 — {1 regularization.
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Simulation results

Slice No 82: Moduli of the original image p (a) and the reconstructed one (b) with
SNR = 19.95 dB using Polyl sampling, 3MG algorithm and {2 — {1 regularization.
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Simulation results

Slice No 121: Moduli of the original image p (a) and the reconstructed one (b) with
SNR = 20.89 dB using Polyl sampling, 3MG algorithm and {2 — {1 regularization.
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Simulation results

Decomp. Algorithm | Penalization SNR (dB)
Slice No 70 [ Slice No 82 [ Slice No 121
M+LFBF | /4 21.15 19.96 20.89
CPCV {1 21.15 19.96 20.89
ADMM 2 21.15 19.96 20.89
Wav. basis | 3MG lo - 01 21.15 19.96 20.89
3MG T - 0o (A) 21.09 20.05 20.97
3MG 75 - 0o (W) 21.21 20.17 21.10
3MG 7 - o (G) 21.33 20.27 21.20
Redundant | 3MG b - f1 21.67 20.46 21.39
wav. frame | 3MG 7 - 0o (G) 22.10 20.94 21.84

Reconstruction results for several optimization and regularization strategies using two
different decompositions (Polyl subsampling pattern)
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Simulation results

6 i B
|
l
44 —3MG I
---cPCV
2§ -~ ~M+LFBF [{
- ADMM
0 ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 350

Time (s)

SNR evolution as a function of computation time
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Simulation results

10%°

Log of error norm
=
o

™

10
—3MG
10° - --=CPCV
- - - M+LFBF
ADMM
107

. . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000
Time (s)

Error ||xy, — &|| as a function of computation time
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° Online algorithm
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S3MG

@ Stochastic version for solving online/adaptive problems

Kopsinis et al., 2011]
Chen et al, 2010]
[Meng et al., 2011]
=21 [Werner et al., 2007]

— I
-15f \ %

T T T
Chouzenoux et al., 2014]|

Ioglo(error)
|
&
T

-5

J

Estimation error along time, for various sparse adaptive filtering strategies

@ The parameters of each tested method are optimized manually.

L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

@ The Stochastic Majorize-Minimize Memory gradient (S3MG) algorithm leads
to a minimal estimation error, while benefiting from good tracking

properties.
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Conclusion

» Majorize-Minimize Memory Gradient algorithm for optimization of
smooth nonconvex complex-valued functions.

» Application to Parallel Magnetic Resonance Imaging
~~ Faster than standard proximal techniques

» Future work
~~ Application to other inverse problems (CEA-LETI: microscopy imaging)
~> Non-smooth case
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