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École des Ponts - ParisTech

Joint work with Rodolphe Jenatton, Nicolas Le Roux and Antoine Bordes.
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Modelling relations between pairs of entities

Triplets:

Term 1 - Relation - Term 2

Single relation

Collaborative filtering

Link prediction

Modeling of social networks

Multiple relations

Collective classification

Modelling in relational knowledge databases

Proteins-protein and protein-ligand interactions

Natural language semantics (and semantic role labelling)
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Our motivation : Learning the semantic value of verbs

Model triplets:

Subject Verb Object
Si Rj Ok

View this as the relation:

Rj(Si ,Ok) = 1
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Different kinds of relational learning

Learn to predict relations from object attributes:

Binary classification from pairs of feature vectors

Exploit logical properties of relations: transitivity, implication, mutual
exclusion, etc

Markov Logic Networks (Kok and Domingos, 2007)

Predict relations from some observed relations

Idea: relations derive from unobserved latent attributes.

Relational learning from intrinsic latent attributes
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Stochastic Block Model
Wang and Wong (1987); Nowicki and Snijders (2001)

Ci C ′k

Zik

P(Zik = 1) =
∑
c,c ′

P(Zik = 1 | Ci = c , C ′k = c ′)P(Ci = c)P(C ′k = c ′)

Pik =
∑
c,c ′

Rcc ′ Sci Oc ′k = (si )>Rok

P = S>R O
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A matrix factorization problem

P = S> R O

0 ≤ Rik ≤ 1

ok ∈ 4, si ∈ 4 with 4 = {x ∈ Rp
+ | ‖x‖1 = 1}
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Stochastic Block Model for several relation types

Ci C ′k

Z
(j)
ik

P(Z
(j)
ik = 1) =

∑
c,c ′

P(Z
(j)
ik = 1 | Ci = c , C ′k = c ′)P(Ci = c)P(C ′k = c ′)

P
(j)
ik =

∑
c,c ′

[Rj ]cc ′ Sci Oc ′k = (si )>Rj ok

Pj = S>Rj O.
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Collective matrix factorization

Pj
= S> Rj O

0 ≤ [Rj ]ik ≤ 1

ok ∈ 4, si ∈ 4 with 4 = {x ∈ Rp
+ | ‖x‖1 = 1}

Corresponds to the approach used in RESCAL (Nickel et al., 2012)

min
S=O,Rj

‖Zj − Pj‖2
F
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A bilinear logistic model

s i ok

Zijk = Rj(Si ,Ok)

P(Rj(Si ,Ok) = 1) = P
(j)
ik =

(
1 + exp−η(j)

ik

)−1

with an “energy”

E(si ,Rj , o
k) = η

(j)
ik = 〈si ,Rj ok〉

So that with
H(j) = (η

(j)
ik )1≤i ,k≤n

we have
H(j) =S>RjO
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Dealing with the number of parameters? : related work

Clustering of Entities and Relations

Miller et al. (2009); Zhu (2012)

Bayesian Non-parametric clustering: Kemp et al. (2006); Sutskever
et al. (2009)

Clustering in the context of Markov Logic Network: Kok and
Domingos (2007)

Embeddings

Collective Matrix Factorization by (Nickel et al., 2012) (rescal)

Semantic Matching Energy (sme) model of Bordes et al. (2012):
encodes relations as vectors for scalability.

Tensor factorization

CANDECOMP/PARAFAC Tucker (1966); Harshman and Lundy
(1994)

Probabilistic formulation of Chu and Ghahramani (2009)
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Our solution: Latent relational factors

Idea: Modelling the relations between the relations...

Rj =
d∑

r=1

αj
r Θr , with Θr = urv

>
r

for some sparse vector αj ∈ Rd .

Given

nr number of relations

p embedding dimension: Rj ∈ Rp×p

d number of latent relational factors

s̄ ≤ λ d average number of non-zero α coefficients

⇒ we reduce the # of parameters from nr p
2 to 2pd + s̄nr
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Algorithmic approach

Large scale |P| = 106

Stochastic projected block-coordinate gradient descent algorithm

Mini-batches of 100 triplets

For each positive triplet (i , j , k), sampling negative triplets (i , j ′, k).

Relational learning with many relations 12/24



Algorithmic approach

Large scale |P| = 106

Stochastic projected block-coordinate gradient descent algorithm

Mini-batches of 100 triplets

For each positive triplet (i , j , k), sampling negative triplets (i , j ′, k).

Relational learning with many relations 12/24



Algorithmic approach

Large scale |P| = 106

Stochastic projected block-coordinate gradient descent algorithm

Mini-batches of 100 triplets

For each positive triplet (i , j , k), sampling negative triplets (i , j ′, k).

Relational learning with many relations 12/24



Algorithmic approach

Large scale |P| = 106

Stochastic projected block-coordinate gradient descent algorithm

Mini-batches of 100 triplets

For each positive triplet (i , j , k), sampling negative triplets (i , j ′, k).

Relational learning with many relations 12/24



Tensor factorization interpretation of our model

η
(j)
ik = 〈si ,Rjo

k〉 =

(si )>
[ d∑
r=1

αj
rurv

>
r

]
ok

=
d∑

r=1

αj
r ((si )>ur )(v>r ok)

=
d∑

r=1

αj
rβ

i
rγ

k
r with βr = S>ur , γr = O>vr

So, H is related to R via

H = (I⊗ S> ⊗O>) R =
d∑

r=1

(Iαr )⊗ (S>ur )⊗ (O>vr )

i.e. H is constrained to be the image of the lower dimensional tensor R.

Relational learning with many relations 13/24



Tensor factorization interpretation of our model

η
(j)
ik = 〈si ,Rjo

k〉 = (si )>
[ d∑
r=1

αj
rurv

>
r

]
ok

=
d∑

r=1

αj
r ((si )>ur )(v>r ok)

=
d∑

r=1

αj
rβ

i
rγ

k
r with βr = S>ur , γr = O>vr

So, H is related to R via

H = (I⊗ S> ⊗O>) R =
d∑

r=1

(Iαr )⊗ (S>ur )⊗ (O>vr )

i.e. H is constrained to be the image of the lower dimensional tensor R.

Relational learning with many relations 13/24



Tensor factorization interpretation of our model

η
(j)
ik = 〈si ,Rjo

k〉 = (si )>
[ d∑
r=1

αj
rurv

>
r

]
ok

=
d∑

r=1

αj
r ((si )>ur )(v>r ok)

=
d∑

r=1

αj
rβ

i
rγ

k
r with βr = S>ur , γr = O>vr

So, H is related to R via

H = (I⊗ S> ⊗O>) R =
d∑

r=1

(Iαr )⊗ (S>ur )⊗ (O>vr )

i.e. H is constrained to be the image of the lower dimensional tensor R.

Relational learning with many relations 13/24



Tensor factorization interpretation of our model

η
(j)
ik = 〈si ,Rjo

k〉 = (si )>
[ d∑
r=1

αj
rurv

>
r

]
ok

=
d∑

r=1

αj
r ((si )>ur )(v>r ok)

=
d∑

r=1

αj
rβ

i
rγ

k
r with βr = S>ur , γr = O>vr

So, H is related to R via

H = (I⊗ S> ⊗O>) R =
d∑

r=1

(Iαr )⊗ (S>ur )⊗ (O>vr )

i.e. H is constrained to be the image of the lower dimensional tensor R.

Relational learning with many relations 13/24



Tensor factorization interpretation of our model

η
(j)
ik = 〈si ,Rjo

k〉 = (si )>
[ d∑
r=1

αj
rurv

>
r

]
ok

=
d∑

r=1

αj
r ((si )>ur )(v>r ok)

=
d∑

r=1

αj
rβ

i
rγ

k
r with βr = S>ur , γr = O>vr

So, H is related to R via

H = (I⊗ S> ⊗O>) R =
d∑

r=1

(Iαr )⊗ (S>ur )⊗ (O>vr )

i.e. H is constrained to be the image of the lower dimensional tensor R.

Relational learning with many relations 13/24



Experiments
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Learning semantic representation for verbs

Data

2,000,000 Wikipedia articles

POS-tagging + chunking+ lemmatization+ semantic role labelling
using SENNA (Collobert et al., 2011)

keeping sentences with syntax subject - verb - direct object

with each term = a single word from the WordNet lexicon

Data Characteristics

Dictionary of 30, 605 words

nr = 4, 547 relations

Training set: 1, 000, 000 unique triplets

Validation set: 50, 000 unique triplets

Testing set: 250, 000 unique triplets
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Learning semantic representation of verbs

Hyperparameters

Embedding dimension p ∈ {25, 50, 100}
Number of latent decompositions matrices d ∈ {50, 100, 200}
Sparsity level as λ ∈ {0.01, 0.05, 0.1, 0.5, 1} × (nr × d)

Weighting of negative triplets

Actual reduction of the number of parameters

“From nr p
2 parameters to 2pd + s̄nr”

With nr = 4, 547, p = 25 and d = 200,

From 2,841,875 to 19,104.
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Verb prediction

Rank of the correct verb

Fraction of examples where the correct verb is in the top z%
(average Recall at precision (100− z)%)

synonyms not considered
median/mean rank p@5 p@20

Our approach 50 / 195.0 0.78 0.95
SME Bordes et al. (2012) 56 / 199.6 0.77 0.95

Bigram 48 / 517.4 0.72 0.83

best synonyms considered
median/mean rank p@5 p@20

Our approach 19 / 96.7 0.89 0.98
SME Bordes et al. (2012) 19 / 99.2 0.89 0.98

Bigram 17 / 157.7 0.87 0.95
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Lexical Similarity Classification

Given two verbs are they similar semantically or not?

Data (Yang and Powers, 2006)

130 pairs of verbs

labeled with score in {0, 1, 2, 3, 4}
Ex:

(divide, split) score 4
(postpone, show) score 0
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Lexical Similarity prediction results: PR curves

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

Predicting class 4

 

 

Our approach
SME
Collobert et al.
Best WordNet

0 0.2 0.4 0.6 0.8 10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

Predicting classes 3 and 4

 

 

Our approach
SME
Collobert et al.
Best WordNet

Similarity measures between verbs from

our approach,

sme Bordes et al. (2012),

Collobert et al. (2011)

the best (out of three) WordNet similarity measure (counting the

number of nodes along te shortest path in the“is-a” hierarchy).
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Conclusions

Highly multi-relational data is worth modelling

Relational learning from intrinsic latent attributes

Matrix factorization models arising from variants on the stochastic
block model

Our approach ties or beats existing approaches on benchmark
datasets

Scales to

almost 5000 relations
more than 30,000 entities
1,000,000 training triplets

Trigram modeling

crucial in benchmark relational learning datasets
marginal in the NLP experiment
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Formulation of the optimization problem

min
S,O,{αj},{Θr},

y,y′,z,z′

∑
(i ,j ,k)∈P

η
(j)
ik −

∑
(i ,j ,k)∈P∪N

log(1 + exp(η
(j)
ik )),

s.t. η
(j)
ik = E(si ,Rj , o

k),

Rj =
d∑

r=1

αj
r ur · v>r , ‖αj‖1 ≤ λ,

O = S, z = z′,

sj , ok , y, y′, z,ur and vr in the ball
{

w; ‖w‖2 ≤ 1
}
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