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Mathematical morphology

e is atheory and technique for the analysis and
processing of geometrical structures,

— based on set theory, lattice theory, topology, and
random functions.

e most commonly applied to digital images,

— but it can be employed as well on graphs, surface
meshes, solids, and many other spatial structures.

e Basic morphological operators are erosion,
dilation, opening and closing



Plan

e MorphMedian and semi-supervised clustering
— The watershed as a classifier

e Some links with optimization framework
— The Power Watershed framework

e Random walker, spectral clustering



Part I: Morphological Median
and the watershed



Morphological Median

Interpolation of shapes

M(X,Y)= | J{(X®AB)N (Y © AB)}
A>0

X Y



Rewriting Morphological Median

d(X,Z)=inf{\| Z C X & \B}

M(X,Y) = {z|d(X,z) <d(Y® z)} =IZ(X | Y°)



Linear SVM: maximum margin
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"Minimize ||w|| subjectto y; (w-Z; —b) > 1fori =1,...,n."



The Maximum Margin Partition

V

p(x,y)
p(X,Y)

Xo = Label O set
(Require) V = My U My

Some set of points

Dissimilarity between x and y

inf
oinf_| p(x,y)

X1 = Label 1 set
Xo C Mo,Xl C My



The Maximum Margin Partition
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The Maximum Margin Partition

V' = Some set of points
p(x,y) := Dissimilarity between x and y
X,Y) = inf
p(X,Y) weinf_, P(xY)
Xo = Label 0 set X1 = Label 1 set
(Require)V = My U M Xo C My, X1 C M

Observe:

Margin(Xp, boundary) = p(Xp, M)
Margin(X1,boundary) = p(X1, Mp)



The Maximum Margin Partition
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p(x,y)
p(X,Y)

Xo = Label 0 set
(Require) V = My U My

Some set of points

Dissimilarity between x and y

inf
oinf_, p(x,y)

X1 = Label 1 set
Xo C Mo,Xl C My

Margin = inf {p(Xo, M1), p(X1, Mo)}



The Maximum Margin Partition

V' = Some set of points
p(x,y) := Dissimilarity between x and y
X,Y) = inf
p(X,Y) . )'g]yeyp(x,y)
Xo = Label 0 set X1 = Label 1 set
(Require)V = My U My Xo C My, X1 C M

Result (Maximum Margin Partition)

Given the definitions as above, a partition V.= My U M is called the
maximum partition if it is

arg max inf {p(Xo, M1), p(X1, Mo)}

M07M1




The Maximum Margin Partition

arg max p(Xg, X1, M) = arg max {inf {p(Xo,M),p(Xla M)}}
M M

X. V)= inf .
p(X,Y) xe;(r}yeyp(:v,y)



MorphMedian

Recall:

m(X,Y) = x|d(X,x) < d(Y*, x)}



MorphMedian

Result

Given (V, p), and Xy, X1, every maximum margin partition is
MORPHMEDIAN and vice versa.




MorphMedian

VV = Set of points
p := Dissimilarity Measure

Result (MORPHMEDIAN)

Let (V, p) be defined as above. Xy, X1 denote the labelled sets. Define the
MORPHMEDIAN partition as any partition which satisfies

Q@ x € Xp if p(Xo, x) < p(X1,x)

Q@ x € Xy if p(X1, x) < p(Xo, x)




Watersheds




Watersheds

For topographics purposes, the watershed has been studied since the 19t century
(Maxwell, Jordan, ...)



Watersheds

e One hundred years later
(1978), it was introduced
by Digabel and Lantuéjoul
for image segmentation

 And popularized by L.
Vincent and P. Soille in
their celebrated 1991
PAMI paper
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Watersheds

* One hundred years later __,
(1978), it was introduced
by Digabel and Lantuéjoul
for image segmentation

 And popularized by L.
Vincent and P. Soille in
their celebrated 1991

PAMI paper 1"'\



Watersheds

e One hundred years later
(1978), it was introduced
by Digabel and Lantuéjoul
for image segmentation

 And popularized by L.
Vincent and P. Soille in
their celebrated 1991
PAMI paper




The family of discrete watersheds

Topological watersheds

(Only watersheds that preserve the altitudes of the passes)

On pixels On edges On complexes

I
Fusion graphs ‘Watershed cuts Power watersheds Ultrametric watersheds Simplicial stacks
p

Link between thinness, Optimality, Framework for seeded image segmentation (Hierarchical segmentation) Ll B
region merging, drop of water principle (graph cuts, random walker, ...) collapse, watersheds
and watersheds Energy minimization and optimal spanning forests

¢ =2 = uniqueness




The family of discrete watersheds

Topological watersheds

[Only watersheds that preserve the altitudes of the passes)

On pixels On edges On complexes

I
Fusion graphs ‘Watershed cuts Power watersheds Ultrametric Watershedsl Simplicial stacks

Link between thinness, Optimality, Framework for seeded image segmentation (Hierarchical segmentation) Link between

region merging, drop of water principle (graph cuts, random walker, ...) collapse, watersheds
and watersheds Energy minimization and optimal spanning forests
q =2 = uniqueness




Watershed cuts

m Defined by the drop of water principle

m Equivalent to a catchment basins principle

m Optimal — an equivalence with Minimum Spanning Trees

OPTIMALITY PARADIGMS /J\TOPOGRAPHICAL PARADIGMS
Watershed cut
------- Ce T | cEee
(Boruvska, Prim, Kruskal)
v . -
IFT agorithms T Flooding algorithm
(Dijkstra, Falcaoetal.) |77 SPF cut @ ’

GRAY SCALE-TRANSFORM PARADIGMS




Notations

@ Let G =(V, E) be a graph.
@ Let F be a map from E to R.




Minimum spanning forest

@ The weight of a forest Y is the sum of its edge weights
/.e., ZUEE(Y) F(U)

We say that Y is a minimum spanning forest (MSF) relative to X
if Y Is a spanning forest relative to X and if the weight of Y Is
less than or equal to the weight of any other spanning forest
relative to X.




MSF - Example




MSF - Example







MSF - Example




Watershed and MSF equivalence

An edge-set S C E is a MSF cut for the minima of F if and only
it S is a watershed cut of F.



Watershed cuts as classifiers

Result

Given an edge weighted graph G = (V, E, W), and a set of seeds
S = Xop U Xy, MSF-watershed returns a maximum margin partition with

set of points as V' and

p(x,y) = inf supW(e)
weMN(x,y) een




Watershed-cut as classifiers
for semi-supervised learning
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Results for SVM
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Morphological regularization

(c)

(b)

(a)

(a)Data with some wrongly labeled points
(b)MSF partition (Watershed-cut)

(c) Area-filtered watershed



Work in progress

e The watershed is a classifier
— Hence, what if we “ensemble” watersheds?
— Hence, what if we combine them with Neural nets



Ensemble watersheds

TABLE 1
RESULTS OBTAINED USING DIFFERENT METHODS ON DATASETS FROM CHAPPELLE
Method SSL1 SSL2 SSL3 SSL4 SSL5 SSL6 SSL7

watershed 96.53+£0.70 | 95.66+0.87 | 99.77£0.22 | 51.35+£3.64 | 55.19+£1.48 | 95.70£0.45 | 54.84+1.32
IFT-SUM 96.96+0.53 | 95.174+0.24 | 95.06+£1.22 | 53.9242.95 | 61.15+£0.76 | 90.06+£0.85 | 64.601+1.96
RW 98.16+£0.34 | 91.41£0.92 | 95.68+£1.42 | 54.27£2.56 | 67.75+£5.59 | 91.70£1.30 | 75.56+4.16
PW 97.994+0.49 | 89.42+0.78 | 95.68£1.42 | 52.22+2.29 | 67.75+£5.59 | 91.68+1.36 | 75.56+£4.16
SVM 93.78+0.67 | 90.81+0.57 | 56.87+£0.81 | 60.00£2.81 | 83.57+0.80 | 22.16+0.49 | 84.49+1.22
INN 96.96+£0.53 | 95.184£0.24 | 95.06+£1.22 | 53.92£2.95 | 61.15+£0.75 | 90.06£0.85 | 64.61+1.97
RFC 95.36+£0.87 | 87.744£0.58 | 91.42+0.64 | 55.76+£2.33 | 72.75+0.89 | 90.51£1.06 | 70.45+1.75
Ensemblewatershed | 98.17£0.35 | 92.71+1.17 | 99.38+£0.90 | 53.164+3.14 | 64.39+3.11 | 95.09£0.94 | 68.29+1.77

This morning results!




Accuracy

Ensemble watersheds
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Using watershed as a layer
of Neural Network

(a) (b) (c) (d)
(b), (c) and (d) are representation of the data by the NN

(a) Data (b) NN (c) Siamese Network (d) Siamese + WS

Preserves the structure of the datal!



Part Il: Watershed and optimization



Some notations

A simple, finite graph G = (V/, E) with nodes v; and |V| = m
Edge: e; spanning two vertices v; and v;

Pairwise weight: wj; for an edge ¢,

Unary weight: w; unary weights penalizing the (observed)
configuration at node v;.

We are looking for x, a regularized version of the observed
configuration y




A generic formulation

Power-watershed with g > 0

Let g > 0, we set

WP(x) = Z wiiP X — x;[9 + Z w;P[x; — £ (3)

eUEE v,EV

J/
N Vv

Smoothness term Data term




Random walker

m Combinatorial Dirichlet problem. [Grady 2006] (q=2)

m Resolution of system of linear equations.

. 3 4
m Energy formulation — extends to 0.7—0.8 1
a large class of problems 1 3 4
1 3
m No blocking artefacts 0.2——0.7——0.8
_4
4 2 2




Random walker

m Combinatorial Dirichlet problem. [Grady 2006] (q=2)

m Resolution of system of linear equations.

Advantages

m Energy formulation — extends to
a large class of problems

m No blocking artefacts

Drawbacks

m Requires a more centered markers
placement

m Super-linear complexity




And the watershed?

m Watershed [Beucher-Lantuéjoul 1979, Vincent-Soille 1991]

Advantages

m Fast
m Multilabel
m Robust to markers size

Drawbacks

m Leaking effect




The Power Watershed framework

* .
Xy g = argmin E W,-J-”\X,-—Xj|q+ E w;P|x; — 19
x e;€E vieV

_/ \ . _/
-~

Smoothness term Data term

X = |lim x*
p—oo P4



Convergence of RW when p=2» 0

Input seeds

, /1\ x*, = argmin Z wi txi—x°+ D(x)
Loy x e,'J‘EE V. .
y N - _Data fidelity
,‘ Smoothness term

"

solution x* cut: threshold of x*



Convergence of RW when p=2» 0

Input seeds

, /1\ x*, = argmin Z wi “|xi — xi[*+  D(x)
] X GUEE V. .
A N - _Data fidelity
} Smoothness term

‘V

solution x*, cut: threshold of x*,



Convergence of RW when p=2» 0

Input seeds

, /J\ x*; = argmin Z wi 2lxi — x?+  D(x)
) X e,-JEE v .
A N _— _ Data fidelity
} Smoothness term

"

solution x*; cut: threshold of x*;



Convergence of RW when p=2» 0

Input seeds

, , x*, = argmin Z wi *|x —x)°+  D(x)
] X e, cFE Y. .
A NG — _ Data fidelity
Smoothness term

"

solution x*, cut: threshold of x*,



Convergence of RW when p=2» 0

Input seeds

, /1\ X" = argmin Z wi °Ix — X7+ D(x)
) X e,-JEE . .
A N - _Data fidelity
Smoothness term

"

solution x*; cut: threshold of x*;



Convergence of RW when p=2» 0

Input seeds
e ]

, /J\ x*y = argmin Z wi YIxi —x P+ D(x)
| X ei.€E \\/'/ .
- - _ Data fidelity
Smoothness term

solution x*, cut: threshold of x*



Convergence of RW when p=2» 0

Input seeds
"~ ‘

i x13" = argmin Z w; X — x)°+  D(x)

x e, €E M :
NG — _Data fidelity
Smoothness term

solution xi3* cut: threshold of xi3*



Convergence of RW when p=2» 0

Input seeds
e ‘

X

, /_\\ X18" = argmin Z w; X — [P+ D(x)

e,jEE

- _Data fidelity
Smoothness term

solution xig* cut: threshold of xg*



Convergence of RW when p=2» 0

Input seeds
»” ¢

.

' /J\ X, = arg min Z wi”|xi —x |7+ D(x)
4? X o CE ~~
/ < _ Data fidelity

' Smoothness term

Theorems

When p — oo,
m the obtained cut Is an
MSF cut.

m when g > 1, the solution X is
unique.

X = limp—oso le cut: threshold of X



The (extended)
Power Watershed framework

mletp>0 m>0,n>0 and
m nreal numbers 1 > XAg> A1 > ... \j—1 >0
QP(X) = > AMQk(x) (1)
0<k<n

where, for all 0 < k < n, Qx : R™ — R Is a continuous function. We
search x* € R™ such that

x* € lim argmin QP(x) (2)
p—00 xXERM



Main PW theorem

Set
Mo = arg min Qp(x) (4)
xeRM
V1<k<n Mg=argminQx(x) (5)
xeMy_q

Any convergent sequence (Xx,)p>0 of minimizers of QP converges to
some point of M,_1.
Furthermore, we can estimate the minimum of QP as follows:

min QP (x Z A my 4+ o(Ar_;) (6)

xeRM
0<k<n

where my = minyepn, Qk(x).



Spectral clustering:
intuitive explanation

Let L be one of the (many) graph-Laplacians.

.\i’fr : 0 0
: (O} ] L, | ..
= 5 0 0 :

T k—'\.-_\‘;.'jr:" f L — L .. 1 0

. 2 0
OR 3 . 0

ﬂd’lmmn
Y M First three eigenvectors




Spectral clustering: ratio-cut

Problem (Ratio-cut algorithm)

For finding k cluster, solve

minimize Tr(H'LH)
HeRka

subject to H*H =1

where L Is the graph-laplacian

D is the diagonal matrix diag(dy, . . ., dn) with d; = ), wj;, and
L=D—-W.



Ratio-cut

Let L, as the graph-laplacian of the subgraph induced by the edges
whose weights are exactly wy.

j
minimize wi Tr(HEL H
HeRm>k ; T <H)

subject to H'H =1

Ratio-cut



Power Ratio-cut

Let L, as the graph-laplacian of the subgraph induced by the edges
whose weights are exactly wy.

minimize wP Tr(H" Lk H)
HeRmMxk 1

subject to H'H =1

Ratio-cut



Power Ratio-cut

Let Lx as the graph-laplacian of the subgraph induced by the edges
whose weights are exactly wy.

J
lim minimize E wP Tr(H Lk H)
p—00  HeRmxk —1

subject to H'H =1

Ratio-cut Power ratio-cut



PR-cut in practice

e Cluster the weights with (for example) K-means

e Apply a MST-like algorithm on the clustered
weights to get a rough clustering

e Refine the (weighted) borders of the clusters
with Ratio-cut



Replacing NCut with PRCut in MCG

Same quality of results obtained much faster
replacing Normalized Cut by Power Ratio cut
in the Multiscale Combinatorial Grouping technique




Main message

m [ he center of the clusters are easy to cluster
m Borders are more difficult

m Hence, apply an easy and fast algorithm on the centers (such as
a MST), and do something more fancy on the borders

How do we identify the borders and the centers of the cluster?



Main message

m [ he center of the clusters are easy to cluster
m Borders are more difficult

m Hence, apply an easy and fast algorithm on the centers (such as
a MST), and do something more fancy on the borders

How do we identify the borders and the centers of the cluster?

Use a MST!



MM in data science

e |s usefull ©

 Need to revisit everything we have done

— From a new perspective

e Much work to do!




