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Capturing a 3D world

3D data crucial for robotics,
autonomous vehicle, 3D scale
models, virtual reality etc...

Can be computed from images:
stereo, SfM, SLAM (cheap, not
precise).

LiDAR (expensive, precise).

Can be fixed, mobile, aerial,
drone-embarked.

Produces a 3D point cloud:
P ∈ Rn×3.

Large acquisition: n typically in
the 108s.
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Future trends

LiDAR are getting cheaper :100k$→ 2k$
in a few years.

Also coming: solid state LiDAR (cheap,
fast and resilient), single photon LiDAR
(unmatched acquisition density).

Major industrial application: autonomous
driving, virtual models, land survey...

Also to come: major advances in
automatic analysis of 3D data.

Rapid progress in harware and
methodology + major applications = a
booming field.
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Analysis of 3D point clouds

Classification: classify the point
cloud among class set K:

P 7→ K

Partition: cluster the point cloud
in C parts/object:

Pi 7→ [1, · · · ,C ]

Semantic Segmentation: classify
each point of a point cloud
between K classes:

Pi 7→ [1, · · · ,K ]

Instance Segmentation: cluster
the point cloud into semantically
characterized objects:

Pi 7→ [1, · · · ,C ]

[1, · · · ,C ] 7→ [1, · · · ,K ]
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What makes 3D analysis so hard

- Data volume considerable.

- Lack of grid-structure.

- Permutation-invariance.

- Sparsity.

- Highly variable density.

- Acquisition artifacts.

- Occlusions.
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Pointwise classification

Step 1: compute point features
based on neighborhood

Step 2: classification (RF, SVM,
etc...)

Step 3: smoothing to increase
spatial regularity (with CRFs,
MRFs, graph-structured
optimization, etc...)

Lin =

√
λ1 −

√
λ2√

λ1

Pla =

√
λ2 −

√
λ3√

λ1

Sca =

√
λ3√
λ1
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Image-Based Methods

A simple observation: CNNs
works great for images. Can we
use images for 3D?

SnapNet:

- surface reconstruction

- virtual snapshots

- semantic segmentation of resulting
images with CNNs

- project prediction back to p.c.
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Voxel-Based Methods

Idea: generalize 2D convolutions
to regular 3D grids

Voxelization + 3D convNets

Problem: inefficient
representation, loss of invariance,
costly (cubic)

Idea 1: OctNet, OctTree based
approach

Idea 2: SegCloud, large voxels,
subvoxel predictions with CRFs.

Idea 3: SplatNet, sparse
convolutions with hashmaps.

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 14 / 57
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3D Convolution-Based Methods

Idea: generalize 2D convolutions
to 3D point clouds as unordered
data.

Tangent Convolution: 2D
convolution in the tangent space
of each point.

PointCNN : χ-convolutions:
generalized convolutions for
unordered inputs.

Principle: the network learns how
to permute ordered inputs

The invariance is learnt!

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 15 / 57
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PointNet

A fondamental constraint: inputs are invariant by permutation

Solution: process points independently, apply permutation-invariant
pooling, process this feature with a MLP.

n: number of points, k size of observations, e(i) size of intermediary
embeddings, e(f ) size of output

p0

pn

...

f0

fn

...

MLP

MLP

shared FMAX outMLP

n × k n × e(i)

e(i) × 1 e(f ) × 1
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Graph-Neural Network

Generalize convolutions to the
general graph setting.

For example: k-nearest neighbors
graph of 3D points.

Idea: Each point maintain a
hidden state hi influenced by its
neighbors.

GNN Qi2017: an iterative
message-passing algorithm using a
mapping f and a RNN g :

h
(t+1)
i = g(

∑
j→i

f (ht
i ), h

t
i )

ECC Simonovski2017 messages
are conditioned by edge features:

h
(t+1)
i = g(

∑
j→i

Θi,j � ht
i , h

t
i )
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are conditioned by edge features:

h
(t+1)
i = g(

∑
j→i

Θi,j � ht
i , h

t
i )
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Why we need to scale

Problem: best approaches are
very memory-hungry and the data
volumes are huge.

Previous methods only works with
a few thousands points.

Naive strategies:

- Aggressive subsampling: loses a
lot of information.

- Sliding windows: loses the global
structure.
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PointNet++

Pyramid structure for
multi-scale feature
extraction.

From local to global with
with increasingly abstract
features.

Still require to process
millions of points.
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SuperPoint-Graph

Observation:
npoints � nobjects.

Partition scene
into superpoints
with simple
shapes.

Only a few
superpoints,
context leveraging
with powerful
graph methods.
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Pipeline

Semantic segmentation down to 3 sub-problems:

- Geometric Partition : into simple shapes.

Complexity: very high (clouds of 108 points)

Algorithm: `0-cut pursuit

- Superpoint embedding: learning shape descriptors

Complexity: low (subsampling to 128 points × ∼ 1000 points)

Algorithm: PointNet

- Contextual Segmentation: using the global structure

Complexity: very low (superpoint graph ∼ 1000 sp)

Algorithm: ECC with Gated Recurrent Unit (GRU)
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Pipeline

S1

S2

S3

S4

S5

S6

point

Voronoi Edge

(a) Point cloud

S1

S2

S3

S4

S5

S6

superpoint

superedge

(b) Superpoint graph

S1

S2

S3

S4

S5

S6 pointnet

pointnet

pointnet

pointnet

pointnet

pointnet

GRU

GRU

GRU

GRU

GRU

GRU

table

table

table

chair

chair

chair

embeddings

(c) Convolution Network
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Qualitative Results: Semantic3D

Semantic3D: 3 billions points over 30 clouds

route
herbe
arbre
buisson
bâtiment
aménagement
artefact
voiture
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Quantitative Results: Semantic3D

Methode OA mIoU road grass tree bush
build-

ing
hard-
scape

arti-
fact

cars

reduced test set: 78 699 329 points
TMLC-MSR 86.2 54.2 89.8 74.5 53.7 26.8 88.8 18.9 36.4 44.7
DeePr3SS 88.9 58.5 85.6 83.2 74.2 32.4 89.7 18.5 25.1 59.2
SnapNet 88.6 59.1 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4
SegCloud 88.1 61.3 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3

SPG (Ours) 94.0 73.2 97.4 92.6 87.9 44.0 93.2 31.0 63.5 76.2
full test set: 2 091 952 018 points

TMLC-MS 85.0 49.4 91.1 69.5 32.8 21.6 87.6 25.9 11.3 55.3
SnapNet 91.0 67.4 89.6 79.5 74.8 56.1 90.9 36.5 34.3 77.2

SPG (Ours) 92.9 76.2 91.5 75.6 78.3 71.7 94.4 56.8 52.9 88.4
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Qualitative Results: S3DIS

Indoor, 3 buildings, 6 stories, 200+ rooms, 600 000 000+ points

ceiling
ground
wall
column
beam
window
door
table
chair
bookcase
board
other
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Résultats qualitatif: S3DIS

ceiling
ground
wall
column
beam
window
door
table
chair
bookcase
board
other
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Quantitative Results: S3DIS

Method OA mAcc mIoU door board
A5 PointNet – 48.5 41.1 10.7 26.3

A5 SEGCloud – 57.3 48.9 23.1 13.0
A5 SPG 86.4 66.5 58.0 61.5 2.1

PointNet 78.5 66.2 47.6 51.6 29.4
Engelmann 81.1 66.4 49.7 51.2 30.0

SPG 85.5 73.0 62.1 68.4 8.7

Śtep Full cloud 2 cm 3 cm 4 cm
Voxelisation 0 40 24 16

Features 439 194 88 43
Partition 3428 1013 447 238

SPG computation 3800 958 436 252
Inference ×10 240 110 60 50

Total 7907 2315 1055 599
mIoU 6-fold 54.1 60.2 62.1 57.1
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Superpoint Partition

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj ] ,

e ∈ RC×m : handcrafted descriptors of the local geometry/radiometry

Superpoints: connected components of a piecewise constant
approximation of e structured by an adjacency graph.

Problem: any errors made in the partition will carry in the prediction...
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The Pipeline

Input Point Cloud Learned Embedding

Oversegmentation True Objects
General idea:

1) Train a neural network to produce points embeddings with high contrast
at the border of objects...

2) ... Which serve as inputs of a nondifferentiable segmentation algorithm.
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Adjacency Graph

G = (C ,E) a meaningful
adjacency graph

Construction is problem-dependant

Einter : set of inter-object edges

Eintra : set of intra-object edges

We want embeddings with high
contrast at Einter and similar value
at Eintra

If we get Einter right, then we have
automatically object purity!

almost!
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Generalized Minimal Partition Problem

ei embeddings of the local geometry/radiometry

Idea: Superpoints are the component of a piecewise-constant
approximation of the embedings

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj ] ,

Superpoints: regions with homogeneous embeddings

Works well with handcrafted embeddings, should work with learned ones!

Problem: a non-convex, nondifferentiable, noncontinuous problem

Good approximations can be computed with `0-cut pursuit [Landrieu &
Obozinski SIIMS 2018]

Learning 3D Point Clouds Segmentation 33 / 57



Generalized Minimal Partition Problem

ei embeddings of the local geometry/radiometry

Idea: Superpoints are the component of a piecewise-constant
approximation of the embedings

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj ] ,

Superpoints: regions with homogeneous embeddings

Works well with handcrafted embeddings, should work with learned ones!

Problem: a non-convex, nondifferentiable, noncontinuous problem

Good approximations can be computed with `0-cut pursuit [Landrieu &
Obozinski SIIMS 2018]

Learning 3D Point Clouds Segmentation 33 / 57



Generalized Minimal Partition Problem

ei embeddings of the local geometry/radiometry

Idea: Superpoints are the component of a piecewise-constant
approximation of the embedings

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj ] ,

Superpoints: regions with homogeneous embeddings

Works well with handcrafted embeddings, should work with learned ones!

Problem: a non-convex, nondifferentiable, noncontinuous problem

Good approximations can be computed with `0-cut pursuit [Landrieu &
Obozinski SIIMS 2018]

Learning 3D Point Clouds Segmentation 33 / 57



Generalized Minimal Partition Problem

ei embeddings of the local geometry/radiometry

Idea: Superpoints are the component of a piecewise-constant
approximation of the embedings

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj ] ,

Superpoints: regions with homogeneous embeddings

Works well with handcrafted embeddings, should work with learned ones!

Problem: a non-convex, nondifferentiable, noncontinuous problem

Good approximations can be computed with `0-cut pursuit [Landrieu &
Obozinski SIIMS 2018]

Learning 3D Point Clouds Segmentation 33 / 57



Generalized Minimal Partition Problem

ei embeddings of the local geometry/radiometry

Idea: Superpoints are the component of a piecewise-constant
approximation of the embedings

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj ] ,

Superpoints: regions with homogeneous embeddings

Works well with handcrafted embeddings, should work with learned ones!

Problem: a non-convex, nondifferentiable, noncontinuous problem

Good approximations can be computed with `0-cut pursuit [Landrieu &
Obozinski SIIMS 2018]

Learning 3D Point Clouds Segmentation 33 / 57



Generalized Minimal Partition Problem

ei embeddings of the local geometry/radiometry

Idea: Superpoints are the component of a piecewise-constant
approximation of the embedings

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj ] ,

Superpoints: regions with homogeneous embeddings

Works well with handcrafted embeddings, should work with learned ones!

Problem: a non-convex, nondifferentiable, noncontinuous problem

Good approximations can be computed with `0-cut pursuit [Landrieu &
Obozinski SIIMS 2018]

Learning 3D Point Clouds Segmentation 33 / 57



The Problem With the GMPP

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj ] ,

Let consider our pipeline:

- Let x be the parameters of the Local Point Embedder
- Let e(x) be the resulting embeddings
- Let f ?(e(x)) be the solution of the GMPP
- Let CCC the constant connected component operator on G
- The superpoints are: S = CCC(f ?(e(x)))

Let M(S) be a measure of how good an oversegmentation is
(implementing purity, border recall, etc...)

Naive Approach: `(x) = −M(CCC(f ?(e(x))))

To backpropagate we need: ∂CCC
∂f ?

and ∂f ?

∂e

Problem:Those functions are not backpropagable.
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Graph-Structured Contrastive Loss

We propose a surrogate loss to learn meaningful embeddings

`(e) =
1

|E |

 ∑
(i,j)∈Eintra

φ (ei − ej) +
∑

(i,j)∈Einter

µi,jψ (ei − ej)

 ,

φ minimum at 0, ψ maximum at 0

φ(x) = δ(
√
‖x‖2/δ2 + 1− 1)

ψ(x) = max (1− ‖x‖, 0)

Promotes homogeneity within objects and contrast at their borders

µi,j : weight of inter-edges
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Cross-Partition Weighting Strategy, cont’d

µU,V = µ
min (| U |, | V |)
| (U,V ) | for (U,V ) ∈ E µi,j = µU,V for all (i , j) ∈ (U,V )

Role of µi,j critical: assess impact
of missed edge.

Operate on G = (V, E) adjacency
graph of cross-partition between
superpoints and real objects.

superpoint

majority object

trespassing

interface

µLW,LD =

µRW,RD =
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Results

We require 5 times less superpoints for similar performance!
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Illustration

Input cloud Ground truth objects LPE embeddings

Graph-LPE (ours) VCCS, Papon et al. 2013 Lin et al. 2018
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Results

Method OA mAcc mIoU
6-fold cross validation

PointNet 2017 78.5 66.2 47.6
Engelmann et al. in 2017 81.1 66.4 49.7

PointNet++ 2017 81.0 67.1 54.5
Engelmann et al. in 2018 84.0 67.8 58.3

SPG 2018 85.5 73.0 62.1
PointCNN 2018 88.1 75.6 65.4

Graph-LPE + SPG (ours) 87.8 77.5 67.6
Fold 5

PointNet 2017 - 49.0 41.1
Engelmann et al. in 2018 84.2 61.8 52.2

pointCNN 2018 85.9 63.9 57.3
SPG 2018 86.4 66.5 58.0

PCCN 2018 - 67.0 58.3
Graph-LPE + SPG (ours) 87.8 69.1 61.5

Table: S3DIS

Method OA mAcc mIoU
PointNet 2017 79.7 47.0 34.4

Engelmann 2018 79.7 57.6 35.6
Engelmann 2017 80.6 49.7 36.2

3P-RNN 2018 87.8 54.1 41.6
Graph-LPE + SPG (ours) 85.2 62.4 49.7

Table: vKITTI
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Illustration

Input Cloud Oversegmentation

prediction Ground Truth
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the Cut-Pursuit Algorithm

A working-set approach to graph-structured spatial regularization

Joint work with Guillaume Obozinski and Hugo Raguet

Initially designed for graph-total variation minimization

Can be generalized to the nonconvex setting of the GMMP.

Main Idea: exploiting the coarseness of the solutions of such problem.

L. Landrieu and G. Obozinski. Cut Pursuit: Fast Algorithms to Learn Piecewise
Constant Functions. In AISTATS, 2016
L. Landrieu and G. Obozinski. Cut pursuit: Fast Algorithms to Learn Piecewise
Constant Functions on General Weighted Graphs. SIAM Journal on Imaging Sciences,
2017
H. Raguet and L. Landrieu. Cut-pursuit Algorithm for Regularizing Nonsmooth
Functionals With Graph Total Variation. In ICML, 2018
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Objective

x? = arg minx∈RV f (x) +
∑

v∈V gv (x) +
∑

(u,v)∈E w(u,v) |xu − xv |

differentiable

dir. derivative in ] − ∞,∞]
ex: |·| , ιΩ(·) graph total variation

- Optimization problem strutured by G = (V ,E ,w)

- Fairly general formulation

- Includes inverse problems: f (x) = ‖Ax − y‖2

- L1 fidelity: f (x) = 0, gv (x) = |xv − yv |
- Fused lasso regularization: gv (x) = |xv |
- No convexity requirement.
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Motivation

- TV regularization ⇒ solution
piecewise constant.

- What if we knew this partition in
advance?

- We could solve the problem on a
much smaller reduced graph.

- TV regularization constrained to
piecewise constant solutions wrt a
partition of G ⇔ TV regularization
wrt. the reduced graph.
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Principle

1 Start with a trivial partition
P = {V }

2 Solve problem on reduced graph
induced by P

3 Refine current partition P
4 Critical point found.

Provable convergence in finite
number of steps.

In practice only a few iterations
necessary.
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Refinement step

Objective: add degrees of liberty to the reduced problem to decrease F as
much as possible

Solution: use first order information at current solution x to split along a
steep descent direction

find d (x) ∈ arg min
d∈DV

F ′(x , d) ,

with directional derivability:

F ′(x , d) =
∑
v∈V
dv>0

δ+
v (x)−

∑
v∈V
dv<0

δ−v (x) +
∑

(u,v)∈E
xu=xv

w(u,v) |du − dv | .

In practice: pick steepest direction in finite set DV :

Direction set:
smooth case (gv = 0 for all v ∈ V ): D = {−1,+1}
nonsmooth case: D = {−1, 0,+1}
Steepest direction as a grapĥ cut problem.
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Implementation and variants

Reduced problem: proximal algorithm (Preconditoned Forward
Douglas-Rachford) on reduced graph

Refinement: graph cut on full graph with Boykov’s augmenting path.

Can be extended to multidimensional data (heuristic).

Can be extended to the GMPP (heuristic).

Can be fully parallelized, even the graph cuts-based phase.

H. Raguet and L. Landrieu. Preconditioning of a Generalized Forward-Backward
Splitting and Application to Optimization on Graphs. SIAM Journal on Imaging
Sciences, 2015.
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EEG Experiment

- EEG : from 96 electrods to ∼20.000 triangles

- Underdetermined, ill-conditioned inverse problem

- Sparsity, positivity, smoothness,

- Very coarse ground truth

F : x 7→ 1
2
‖y − Φx‖2 +

∑
v∈V

(λv |xv |+ ιR+ (xv )) +
∑

(u,v)∈E

w(u,v) |xu − xv | ,
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Semantic Segmentation Experiment

- Spatial Regularization of pointwise probabilistic semantic segmentation q
(from local context)

- A probability vector for each vertex

- KL-fidelity, simplex-bound, smoothness prior
F : p 7→

∑
v∈V

KL (qv , pv ) +
∑
v∈V

ι4K
(pv ) +

∑
(u,v)∈E

w(u,v)‖pu − pv‖1 ,
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Conclusion

Our paradigm for graph-structured learning and optimization:

- Exploit the spatial regularity of the solution to increase speed and
precision.

- Use neural networks to learn the inputs and parameters of efficient
optimization algorithms.

- Use graph-structured optimization to compute the structure of neural
network adapted to the data.

All our work is online:

m loicland/superpoint-graph 252 ú 75 �

m loicland/cut-pursuit 22 ú 7 �

m 1a7r0ch3/parallel-cut-pursuit very soon!
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Non-differentiability of the naive pipeline

Non differentiability of the
CCC operator

= Tiny changes - large
consequence

Non differentiability of
f ?(e)

= non-continuous w.r.t
inputs

f ? = arg min ‖f0 − e0‖2 + ‖x1 − e1‖2 + 0.5[f0 6= f1]
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