
Semantic Segmentation of 3D point
Clouds

Loic Landrieu

Université Paris-Est - Machine Learning and
Optimization working Group

March 2019

Presentation

Loic Landrieu, researcher at IGN (French Mapping Agency) in the AI
department

PhD at INRIA/ENPC on Graph-Structured Learning and Optimization, w.
Francis Bach and Guillaume Obozinski

Interest: graph-structured functional optimization and deep learning.

Applications: 3D point clouds, dynamic 3D for autonomous driving,
superspectral satellite images, time series, medical inverse problems.

2 / 57

Presentation

Loic Landrieu, researcher at IGN (French Mapping Agency) in the AI
department

PhD at INRIA/ENPC on Graph-Structured Learning and Optimization, w.
Francis Bach and Guillaume Obozinski

Interest: graph-structured functional optimization and deep learning.

Applications: 3D point clouds, dynamic 3D for autonomous driving,
superspectral satellite images, time series, medical inverse problems.

2 / 57

Presentation

Loic Landrieu, researcher at IGN (French Mapping Agency) in the AI
department

PhD at INRIA/ENPC on Graph-Structured Learning and Optimization, w.
Francis Bach and Guillaume Obozinski

Interest: graph-structured functional optimization and deep learning.

Applications: 3D point clouds, dynamic 3D for autonomous driving,
superspectral satellite images, time series, medical inverse problems.

2 / 57

Presentation

Loic Landrieu, researcher at IGN (French Mapping Agency) in the AI
department

PhD at INRIA/ENPC on Graph-Structured Learning and Optimization, w.
Francis Bach and Guillaume Obozinski

Interest: graph-structured functional optimization and deep learning.

Applications: 3D point clouds, dynamic 3D for autonomous driving,
superspectral satellite images, time series, medical inverse problems.

2 / 57

Presentation outline

1 Deep Learning for 3D Point Clouds

2 Learning 3D Point Clouds Segmentation

3 The Cut Pursuit Algorithm

4 Conclusion

5 Bibliography

3 / 57

Presentation Layout

1 Deep Learning for 3D Point Clouds

2 Learning 3D Point Clouds Segmentation

3 The Cut Pursuit Algorithm

4 Conclusion

5 Bibliography

Deep Learning for 3D Point Clouds 4 / 57

Presentation Layout

1 Deep Learning for 3D Point Clouds
Presentation of the Problem
Traditional Approaches
First Deep-Learning Approaches
Scaling Segmentation

2 Learning 3D Point Clouds Segmentation

3 The Cut Pursuit Algorithm

4 Conclusion

5 Bibliography

Deep Learning for 3D Point Clouds Presentation of the Problem 5 / 57

Capturing a 3D world

3D data crucial for robotics,
autonomous vehicle, 3D scale
models, virtual reality etc...

Can be computed from images:
stereo, SfM, SLAM (cheap, not
precise).

LiDAR (expensive, precise).

Can be fixed, mobile, aerial,
drone-embarked.

Produces a 3D point cloud:
P ∈ Rn×3.

Large acquisition: n typically in
the 108s.

Deep Learning for 3D Point Clouds Presentation of the Problem 6 / 57

credit: medium, VisionSystemDesign, microsoft

Capturing a 3D world

3D data crucial for robotics,
autonomous vehicle, 3D scale
models, virtual reality etc...

Can be computed from images:
stereo, SfM, SLAM (cheap, not
precise).

LiDAR (expensive, precise).

Can be fixed, mobile, aerial,
drone-embarked.

Produces a 3D point cloud:
P ∈ Rn×3.

Large acquisition: n typically in
the 108s.

Deep Learning for 3D Point Clouds Presentation of the Problem 6 / 57

credit: computervisionblog, velodynelidar

Capturing a 3D world

3D data crucial for robotics,
autonomous vehicle, 3D scale
models, virtual reality etc...

Can be computed from images:
stereo, SfM, SLAM (cheap, not
precise).

LiDAR (expensive, precise).

Can be fixed, mobile, aerial,
drone-embarked.

Produces a 3D point cloud:
P ∈ Rn×3.

Large acquisition: n typically in
the 108s.

Deep Learning for 3D Point Clouds Presentation of the Problem 6 / 57

credit: computervisionblog, velodynelidar

Capturing a 3D world

3D data crucial for robotics,
autonomous vehicle, 3D scale
models, virtual reality etc...

Can be computed from images:
stereo, SfM, SLAM (cheap, not
precise).

LiDAR (expensive, precise).

Can be fixed, mobile, aerial,
drone-embarked.

Produces a 3D point cloud:
P ∈ Rn×3.

Large acquisition: n typically in
the 108s.

Deep Learning for 3D Point Clouds Presentation of the Problem 6 / 57

credit: computervisionblog, velodynelidar

Capturing a 3D world

3D data crucial for robotics,
autonomous vehicle, 3D scale
models, virtual reality etc...

Can be computed from images:
stereo, SfM, SLAM (cheap, not
precise).

LiDAR (expensive, precise).

Can be fixed, mobile, aerial,
drone-embarked.

Produces a 3D point cloud:
P ∈ Rn×3.

Large acquisition: n typically in
the 108s.

Deep Learning for 3D Point Clouds Presentation of the Problem 6 / 57

credit: clearpath robotics, tuck mapping solutions

Capturing a 3D world

3D data crucial for robotics,
autonomous vehicle, 3D scale
models, virtual reality etc...

Can be computed from images:
stereo, SfM, SLAM (cheap, not
precise).

LiDAR (expensive, precise).

Can be fixed, mobile, aerial,
drone-embarked.

Produces a 3D point cloud:
P ∈ Rn×3.

Large acquisition: n typically in
the 108s.

Deep Learning for 3D Point Clouds Presentation of the Problem 6 / 57

credit: clearpath robotics, tuck mapping solutions

Future trends

LiDAR are getting cheaper :100k$→ 2k$
in a few years.

Also coming: solid state LiDAR (cheap,
fast and resilient), single photon LiDAR
(unmatched acquisition density).

Major industrial application: autonomous
driving, virtual models, land survey...

Also to come: major advances in
automatic analysis of 3D data.

Rapid progress in harware and
methodology + major applications = a
booming field.

Deep Learning for 3D Point Clouds Presentation of the Problem 7 / 57

credit: velodynelidar, green car congress

Future trends

LiDAR are getting cheaper :100k$→ 2k$
in a few years.

Also coming: solid state LiDAR (cheap,
fast and resilient), single photon LiDAR
(unmatched acquisition density).

Major industrial application: autonomous
driving, virtual models, land survey...

Also to come: major advances in
automatic analysis of 3D data.

Rapid progress in harware and
methodology + major applications = a
booming field.

Deep Learning for 3D Point Clouds Presentation of the Problem 7 / 57

credit: velodynelidar, spar3d

Future trends

LiDAR are getting cheaper :100k$→ 2k$
in a few years.

Also coming: solid state LiDAR (cheap,
fast and resilient), single photon LiDAR
(unmatched acquisition density).

Major industrial application: autonomous
driving, virtual models, land survey...

Also to come: major advances in
automatic analysis of 3D data.

Rapid progress in harware and
methodology + major applications = a
booming field.

Deep Learning for 3D Point Clouds Presentation of the Problem 7 / 57

credit: tuck mapping solutions, clearpath robotics

Future trends

LiDAR are getting cheaper :100k$→ 2k$
in a few years.

Also coming: solid state LiDAR (cheap,
fast and resilient), single photon LiDAR
(unmatched acquisition density).

Major industrial application: autonomous
driving, virtual models, land survey...

Also to come: major advances in
automatic analysis of 3D data.

Rapid progress in harware and
methodology + major applications = a
booming field.

Deep Learning for 3D Point Clouds Presentation of the Problem 7 / 57

credit: tuck mapping solutions, clearpath robotics

Future trends

LiDAR are getting cheaper :100k$→ 2k$
in a few years.

Also coming: solid state LiDAR (cheap,
fast and resilient), single photon LiDAR
(unmatched acquisition density).

Major industrial application: autonomous
driving, virtual models, land survey...

Also to come: major advances in
automatic analysis of 3D data.

Rapid progress in harware and
methodology + major applications = a
booming field.

Deep Learning for 3D Point Clouds Presentation of the Problem 7 / 57

credit: tuck mapping solutions, clearpath robotics

Analysis of 3D point clouds

Classification: classify the point
cloud among class set K:

P 7→ K

Partition: cluster the point cloud
in C parts/object:

Pi 7→ [1, · · · ,C]

Semantic Segmentation: classify
each point of a point cloud
between K classes:

Pi 7→ [1, · · · ,K]

Instance Segmentation: cluster
the point cloud into semantically
characterized objects:

Pi 7→ [1, · · · ,C]

[1, · · · ,C] 7→ [1, · · · ,K]

Deep Learning for 3D Point Clouds Presentation of the Problem 8 / 57

credit: Qi et. al. 2017a

Analysis of 3D point clouds

Classification: classify the point
cloud among class set K:

P 7→ K

Partition: cluster the point cloud
in C parts/object:

Pi 7→ [1, · · · ,C]

Semantic Segmentation: classify
each point of a point cloud
between K classes:

Pi 7→ [1, · · · ,K]

Instance Segmentation: cluster
the point cloud into semantically
characterized objects:

Pi 7→ [1, · · · ,C]

[1, · · · ,C] 7→ [1, · · · ,K]

Deep Learning for 3D Point Clouds Presentation of the Problem 8 / 57

credit: Qi et. al. 2017a

Analysis of 3D point clouds

Classification: classify the point
cloud among class set K:

P 7→ K

Partition: cluster the point cloud
in C parts/object:

Pi 7→ [1, · · · ,C]

Semantic Segmentation: classify
each point of a point cloud
between K classes:

Pi 7→ [1, · · · ,K]

Instance Segmentation: cluster
the point cloud into semantically
characterized objects:

Pi 7→ [1, · · · ,C]

[1, · · · ,C] 7→ [1, · · · ,K]

Deep Learning for 3D Point Clouds Presentation of the Problem 8 / 57

credit: Qi et. al. 2017a

Analysis of 3D point clouds

Classification: classify the point
cloud among class set K:

P 7→ K

Partition: cluster the point cloud
in C parts/object:

Pi 7→ [1, · · · ,C]

Semantic Segmentation: classify
each point of a point cloud
between K classes:

Pi 7→ [1, · · · ,K]

Instance Segmentation: cluster
the point cloud into semantically
characterized objects:

Pi 7→ [1, · · · ,C]

[1, · · · ,C] 7→ [1, · · · ,K]
Deep Learning for 3D Point Clouds Presentation of the Problem 8 / 57

credit: Qi et. al. 2017a

What makes 3D analysis so hard

- Data volume considerable.

- Lack of grid-structure.

- Permutation-invariance.

- Sparsity.

- Highly variable density.

- Acquisition artifacts.

- Occlusions.

Deep Learning for 3D Point Clouds Presentation of the Problem 9 / 57

credit: Gaidon2016, Engelmann2017, Hackel2017

What makes 3D analysis so hard

- Data volume considerable.

- Lack of grid-structure.

- Permutation-invariance.

- Sparsity.

- Highly variable density.

- Acquisition artifacts.

- Occlusions.

Deep Learning for 3D Point Clouds Presentation of the Problem 9 / 57

credit: Gaidon2016, Engelmann2017, Hackel2017

What makes 3D analysis so hard

- Data volume considerable.

- Lack of grid-structure.

- Permutation-invariance.

- Sparsity.

- Highly variable density.

- Acquisition artifacts.

- Occlusions.

Deep Learning for 3D Point Clouds Presentation of the Problem 9 / 57

credit: Gaidon2016, Engelmann2017, Hackel2017

What makes 3D analysis so hard

- Data volume considerable.

- Lack of grid-structure.

- Permutation-invariance.

- Sparsity.

- Highly variable density.

- Acquisition artifacts.

- Occlusions.

Deep Learning for 3D Point Clouds Presentation of the Problem 9 / 57

credit: Gaidon2016, Engelmann2017, Hackel2017

What makes 3D analysis so hard

- Data volume considerable.

- Lack of grid-structure.

- Permutation-invariance.

- Sparsity.

- Highly variable density.

- Acquisition artifacts.

- Occlusions.

Deep Learning for 3D Point Clouds Presentation of the Problem 9 / 57

credit: Gaidon2016, Engelmann2017, Hackel2017

What makes 3D analysis so hard

- Data volume considerable.

- Lack of grid-structure.

- Permutation-invariance.

- Sparsity.

- Highly variable density.

- Acquisition artifacts.

- Occlusions.

Deep Learning for 3D Point Clouds Presentation of the Problem 9 / 57

credit: Gaidon2016, Engelmann2017, Hackel2017

What makes 3D analysis so hard

- Data volume considerable.

- Lack of grid-structure.

- Permutation-invariance.

- Sparsity.

- Highly variable density.

- Acquisition artifacts.

- Occlusions.

Deep Learning for 3D Point Clouds Presentation of the Problem 9 / 57

credit: Gaidon2016, Engelmann2017, Hackel2017

Presentation Layout

1 Deep Learning for 3D Point Clouds
Presentation of the Problem
Traditional Approaches
First Deep-Learning Approaches
Scaling Segmentation

2 Learning 3D Point Clouds Segmentation

3 The Cut Pursuit Algorithm

4 Conclusion

5 Bibliography

Deep Learning for 3D Point Clouds Traditional Approaches 10 / 57

Pointwise classification

Step 1: compute point features
based on neighborhood

Step 2: classification (RF, SVM,
etc...)

Step 3: smoothing to increase
spatial regularity (with CRFs,
MRFs, graph-structured
optimization, etc...)

Lin =

√
λ1 −

√
λ2√

λ1

Pla =

√
λ2 −

√
λ3√

λ1

Sca =

√
λ3√
λ1

Deep Learning for 3D Point Clouds Traditional Approaches 11 / 57

Demantke2011

Weimann2015
Landrieu et. al. 2017a

Pointwise classification

Step 1: compute point features
based on neighborhood

Step 2: classification (RF, SVM,
etc...)

Step 3: smoothing to increase
spatial regularity (with CRFs,
MRFs, graph-structured
optimization, etc...)

Deep Learning for 3D Point Clouds Traditional Approaches 11 / 57

Demantke2011
Weimann2015

Landrieu et. al. 2017a

credit: landrieu et. al. 2017a

Pointwise classification

Step 1: compute point features
based on neighborhood

Step 2: classification (RF, SVM,
etc...)

Step 3: smoothing to increase
spatial regularity (with CRFs,
MRFs, graph-structured
optimization, etc...)

Deep Learning for 3D Point Clouds Traditional Approaches 11 / 57

Demantke2011
Weimann2015
Landrieu et. al. 2017a

credit: landrieu et. al. 2017a

Presentation Layout

1 Deep Learning for 3D Point Clouds
Presentation of the Problem
Traditional Approaches
First Deep-Learning Approaches
Scaling Segmentation

2 Learning 3D Point Clouds Segmentation

3 The Cut Pursuit Algorithm

4 Conclusion

5 Bibliography

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 12 / 57

Image-Based Methods

A simple observation: CNNs
works great for images. Can we
use images for 3D?

SnapNet:

- surface reconstruction

- virtual snapshots

- semantic segmentation of resulting
images with CNNs

- project prediction back to p.c.

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 13 / 57

Boulch et. al. 2017

Image-Based Methods

A simple observation: CNNs
works great for images. Can we
use images for 3D?

SnapNet:

- surface reconstruction

- virtual snapshots

- semantic segmentation of resulting
images with CNNs

- project prediction back to p.c.

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 13 / 57

Boulch et. al. 2017 credit: Boulch et. al. 2017

Image-Based Methods

A simple observation: CNNs
works great for images. Can we
use images for 3D?

SnapNet:

- surface reconstruction

- virtual snapshots

- semantic segmentation of resulting
images with CNNs

- project prediction back to p.c.

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 13 / 57

Boulch et. al. 2017 credit: Boulch et. al. 2017

Image-Based Methods

A simple observation: CNNs
works great for images. Can we
use images for 3D?

SnapNet:

- surface reconstruction

- virtual snapshots

- semantic segmentation of resulting
images with CNNs

- project prediction back to p.c.

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 13 / 57

Boulch et. al. 2017 credit: Boulch et. al. 2017

Image-Based Methods

A simple observation: CNNs
works great for images. Can we
use images for 3D?

SnapNet:

- surface reconstruction

- virtual snapshots

- semantic segmentation of resulting
images with CNNs

- project prediction back to p.c.

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 13 / 57

Boulch et. al. 2017 credit: Boulch et. al. 2017

Image-Based Methods

A simple observation: CNNs
works great for images. Can we
use images for 3D?

SnapNet:

- surface reconstruction

- virtual snapshots

- semantic segmentation of resulting
images with CNNs

- project prediction back to p.c.

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 13 / 57

Boulch et. al. 2017 credit: Boulch et. al. 2017

Voxel-Based Methods

Idea: generalize 2D convolutions
to regular 3D grids

Voxelization + 3D convNets

Problem: inefficient
representation, loss of invariance,
costly (cubic)

Idea 1: OctNet, OctTree based
approach

Idea 2: SegCloud, large voxels,
subvoxel predictions with CRFs.

Idea 3: SplatNet, sparse
convolutions with hashmaps.

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 14 / 57

Wu2015 , Riegler2017 , Tchapmi2017,
Jampani2018.

Voxel-Based Methods

Idea: generalize 2D convolutions
to regular 3D grids

Voxelization + 3D convNets

Problem: inefficient
representation, loss of invariance,
costly (cubic)

Idea 1: OctNet, OctTree based
approach

Idea 2: SegCloud, large voxels,
subvoxel predictions with CRFs.

Idea 3: SplatNet, sparse
convolutions with hashmaps.

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 14 / 57

Wu2015

, Riegler2017 , Tchapmi2017,
Jampani2018.

credit: Riegler2017, Tchapmi2017, Jampani2017

Voxel-Based Methods

Idea: generalize 2D convolutions
to regular 3D grids

Voxelization + 3D convNets

Problem: inefficient
representation, loss of invariance,
costly (cubic)

Idea 1: OctNet, OctTree based
approach

Idea 2: SegCloud, large voxels,
subvoxel predictions with CRFs.

Idea 3: SplatNet, sparse
convolutions with hashmaps.

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 14 / 57

Wu2015

, Riegler2017 , Tchapmi2017,
Jampani2018.

credit: Riegler2017, Tchapmi2017, Jampani2017

Voxel-Based Methods

Idea: generalize 2D convolutions
to regular 3D grids

Voxelization + 3D convNets

Problem: inefficient
representation, loss of invariance,
costly (cubic)

Idea 1: OctNet, OctTree based
approach

Idea 2: SegCloud, large voxels,
subvoxel predictions with CRFs.

Idea 3: SplatNet, sparse
convolutions with hashmaps.

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 14 / 57

Wu2015 , Riegler2017

, Tchapmi2017,
Jampani2018.

credit: Riegler2017, Tchapmi2017, Jampani2017

Voxel-Based Methods

Idea: generalize 2D convolutions
to regular 3D grids

Voxelization + 3D convNets

Problem: inefficient
representation, loss of invariance,
costly (cubic)

Idea 1: OctNet, OctTree based
approach

Idea 2: SegCloud, large voxels,
subvoxel predictions with CRFs.

Idea 3: SplatNet, sparse
convolutions with hashmaps.

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 14 / 57

Wu2015 , Riegler2017 , Tchapmi2017,
Jampani2018.

credit: Riegler2017, Tchapmi2017, Jampani2017

Voxel-Based Methods

Idea: generalize 2D convolutions
to regular 3D grids

Voxelization + 3D convNets

Problem: inefficient
representation, loss of invariance,
costly (cubic)

Idea 1: OctNet, OctTree based
approach

Idea 2: SegCloud, large voxels,
subvoxel predictions with CRFs.

Idea 3: SplatNet, sparse
convolutions with hashmaps.

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 14 / 57

Wu2015 , Riegler2017 , Tchapmi2017,
Jampani2018.

credit: Riegler2017, Tchapmi2017, Jampani2017

3D Convolution-Based Methods

Idea: generalize 2D convolutions
to 3D point clouds as unordered
data.

Tangent Convolution: 2D
convolution in the tangent space
of each point.

PointCNN : χ-convolutions:
generalized convolutions for
unordered inputs.

Principle: the network learns how
to permute ordered inputs

The invariance is learnt!

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 15 / 57

Tatarchenko2018 , Li2018.

3D Convolution-Based Methods

Idea: generalize 2D convolutions
to 3D point clouds as unordered
data.

Tangent Convolution: 2D
convolution in the tangent space
of each point.

PointCNN : χ-convolutions:
generalized convolutions for
unordered inputs.

Principle: the network learns how
to permute ordered inputs

The invariance is learnt!

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 15 / 57

Tatarchenko2018

, Li2018.

credit: Tatarchenko2018, Li2018

3D Convolution-Based Methods

Idea: generalize 2D convolutions
to 3D point clouds as unordered
data.

Tangent Convolution: 2D
convolution in the tangent space
of each point.

PointCNN : χ-convolutions:
generalized convolutions for
unordered inputs.

Principle: the network learns how
to permute ordered inputs

The invariance is learnt!

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 15 / 57

Tatarchenko2018 , Li2018. credit: Tatarchenko2018, Li2018

3D Convolution-Based Methods

Idea: generalize 2D convolutions
to 3D point clouds as unordered
data.

Tangent Convolution: 2D
convolution in the tangent space
of each point.

PointCNN : χ-convolutions:
generalized convolutions for
unordered inputs.

Principle: the network learns how
to permute ordered inputs

The invariance is learnt!

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 15 / 57

Tatarchenko2018 , Li2018. credit: Tatarchenko2018, Li2018

3D Convolution-Based Methods

Idea: generalize 2D convolutions
to 3D point clouds as unordered
data.

Tangent Convolution: 2D
convolution in the tangent space
of each point.

PointCNN : χ-convolutions:
generalized convolutions for
unordered inputs.

Principle: the network learns how
to permute ordered inputs

The invariance is learnt!

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 15 / 57

Tatarchenko2018 , Li2018. credit: Tatarchenko2018, Li2018

PointNet

A fondamental constraint: inputs are invariant by permutation

Solution: process points independently, apply permutation-invariant
pooling, process this feature with a MLP.

n: number of points, k size of observations, e(i) size of intermediary
embeddings, e(f) size of output

p0

pn

...

f0

fn

...

MLP

MLP

shared FMAX outMLP

n × k n × e(i)

e(i) × 1 e(f) × 1

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 16 / 57

Qi et. al.2017aQi et. al.2017a

PointNet

A fondamental constraint: inputs are invariant by permutation

Solution: process points independently, apply permutation-invariant
pooling, process this feature with a MLP.

n: number of points, k size of observations, e(i) size of intermediary
embeddings, e(f) size of output

p0

pn

...

f0

fn

...

MLP

MLP

shared FMAX outMLP

n × k n × e(i)

e(i) × 1 e(f) × 1

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 16 / 57

Qi et. al.2017aQi et. al.2017a

PointNet

A fondamental constraint: inputs are invariant by permutation

Solution: process points independently, apply permutation-invariant
pooling, process this feature with a MLP.

n: number of points, k size of observations, e(i) size of intermediary
embeddings, e(f) size of output

p0

pn

...

f0

fn

...

MLP

MLP

shared FMAX outMLP

n × k n × e(i)

e(i) × 1 e(f) × 1

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 16 / 57

Qi et. al.2017aQi et. al.2017a

Graph-Neural Network

Generalize convolutions to the
general graph setting.

For example: k-nearest neighbors
graph of 3D points.

Idea: Each point maintain a
hidden state hi influenced by its
neighbors.

GNN Qi2017: an iterative
message-passing algorithm using a
mapping f and a RNN g :

h
(t+1)
i = g(

∑
j→i

f (ht
i), h

t
i)

ECC Simonovski2017 messages
are conditioned by edge features:

h
(t+1)
i = g(

∑
j→i

Θi,j � ht
i , h

t
i)

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 17 / 57

Graph-Neural Network

Generalize convolutions to the
general graph setting.

For example: k-nearest neighbors
graph of 3D points.

Idea: Each point maintain a
hidden state hi influenced by its
neighbors.

GNN Qi2017: an iterative
message-passing algorithm using a
mapping f and a RNN g :

h
(t+1)
i = g(

∑
j→i

f (ht
i), h

t
i)

ECC Simonovski2017 messages
are conditioned by edge features:

h
(t+1)
i = g(

∑
j→i

Θi,j � ht
i , h

t
i)

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 17 / 57

Qi2017, Simonovski2017

Graph-Neural Network

Generalize convolutions to the
general graph setting.

For example: k-nearest neighbors
graph of 3D points.

Idea: Each point maintain a
hidden state hi influenced by its
neighbors.

GNN Qi2017: an iterative
message-passing algorithm using a
mapping f and a RNN g :

h
(t+1)
i = g(

∑
j→i

f (ht
i), h

t
i)

ECC Simonovski2017 messages
are conditioned by edge features:

h
(t+1)
i = g(

∑
j→i

Θi,j � ht
i , h

t
i)

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 17 / 57

Qi2017, Simonovski2017

Graph-Neural Network

Generalize convolutions to the
general graph setting.

For example: k-nearest neighbors
graph of 3D points.

Idea: Each point maintain a
hidden state hi influenced by its
neighbors.

GNN Qi2017: an iterative
message-passing algorithm using a
mapping f and a RNN g :

h
(t+1)
i = g(

∑
j→i

f (ht
i), h

t
i)

ECC Simonovski2017 messages
are conditioned by edge features:

h
(t+1)
i = g(

∑
j→i

Θi,j � ht
i , h

t
i)

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 17 / 57

Qi2017, Simonovski2017 credit: Qi2017

Graph-Neural Network

Generalize convolutions to the
general graph setting.

For example: k-nearest neighbors
graph of 3D points.

Idea: Each point maintain a
hidden state hi influenced by its
neighbors.

GNN Qi2017: an iterative
message-passing algorithm using a
mapping f and a RNN g :

h
(t+1)
i = g(

∑
j→i

f (ht
i), h

t
i)

ECC Simonovski2017 messages
are conditioned by edge features:

h
(t+1)
i = g(

∑
j→i

Θi,j � ht
i , h

t
i)

Deep Learning for 3D Point Clouds First Deep-Learning Approaches 17 / 57

Qi2017, Simonovski2017 credit: Simonovski2017

Presentation Layout

1 Deep Learning for 3D Point Clouds
Presentation of the Problem
Traditional Approaches
First Deep-Learning Approaches
Scaling Segmentation

2 Learning 3D Point Clouds Segmentation

3 The Cut Pursuit Algorithm

4 Conclusion

5 Bibliography

Deep Learning for 3D Point Clouds Scaling Segmentation 18 / 57

Why we need to scale

Problem: best approaches are
very memory-hungry and the data
volumes are huge.

Previous methods only works with
a few thousands points.

Naive strategies:

- Aggressive subsampling: loses a
lot of information.

- Sliding windows: loses the global
structure.

Deep Learning for 3D Point Clouds Scaling Segmentation 19 / 57

Why we need to scale

Problem: best approaches are
very memory-hungry and the data
volumes are huge.

Previous methods only works with
a few thousands points.

Naive strategies:

- Aggressive subsampling: loses a
lot of information.

- Sliding windows: loses the global
structure.

Deep Learning for 3D Point Clouds Scaling Segmentation 19 / 57

Why we need to scale

Problem: best approaches are
very memory-hungry and the data
volumes are huge.

Previous methods only works with
a few thousands points.

Naive strategies:

- Aggressive subsampling: loses a
lot of information.

- Sliding windows: loses the global
structure.

Deep Learning for 3D Point Clouds Scaling Segmentation 19 / 57

Why we need to scale

Problem: best approaches are
very memory-hungry and the data
volumes are huge.

Previous methods only works with
a few thousands points.

Naive strategies:

- Aggressive subsampling: loses a
lot of information.

- Sliding windows: loses the global
structure.

Deep Learning for 3D Point Clouds Scaling Segmentation 19 / 57

credit: tuck mapping solution

PointNet++

Pyramid structure for
multi-scale feature
extraction.

From local to global with
with increasingly abstract
features.

Still require to process
millions of points.

Deep Learning for 3D Point Clouds Scaling Segmentation 20 / 57

Qi et. al.2017b credit: Qi et. al.2017b

PointNet++

Pyramid structure for
multi-scale feature
extraction.

From local to global with
with increasingly abstract
features.

Still require to process
millions of points.

Deep Learning for 3D Point Clouds Scaling Segmentation 20 / 57

Qi et. al.2017b credit: Qi et. al.2017b

PointNet++

Pyramid structure for
multi-scale feature
extraction.

From local to global with
with increasingly abstract
features.

Still require to process
millions of points.

Deep Learning for 3D Point Clouds Scaling Segmentation 20 / 57

Qi et. al.2017b credit: Qi et. al.2017b

SuperPoint-Graph

Observation:
npoints � nobjects.

Partition scene
into superpoints
with simple
shapes.

Only a few
superpoints,
context leveraging
with powerful
graph methods.

Deep Learning for 3D Point Clouds Scaling Segmentation 21 / 57

Landrieu&Simonovski2018

SuperPoint-Graph

Observation:
npoints � nobjects.

Partition scene
into superpoints
with simple
shapes.

Only a few
superpoints,
context leveraging
with powerful
graph methods.

Deep Learning for 3D Point Clouds Scaling Segmentation 21 / 57

Landrieu&Simonovski2018

SuperPoint-Graph

Observation:
npoints � nobjects.

Partition scene
into superpoints
with simple
shapes.

Only a few
superpoints,
context leveraging
with powerful
graph methods.

Deep Learning for 3D Point Clouds Scaling Segmentation 21 / 57

Landrieu&Simonovski2018

Pipeline

Semantic segmentation down to 3 sub-problems:

- Geometric Partition : into simple shapes.

Complexity: very high (clouds of 108 points)

Algorithm: `0-cut pursuit

- Superpoint embedding: learning shape descriptors

Complexity: low (subsampling to 128 points × ∼ 1000 points)

Algorithm: PointNet

- Contextual Segmentation: using the global structure

Complexity: very low (superpoint graph ∼ 1000 sp)

Algorithm: ECC with Gated Recurrent Unit (GRU)

Deep Learning for 3D Point Clouds Scaling Segmentation 22 / 57

Pipeline

Semantic segmentation down to 3 sub-problems:

- Geometric Partition : into simple shapes.

Complexity: very high (clouds of 108 points)

Algorithm: `0-cut pursuit

- Superpoint embedding: learning shape descriptors

Complexity: low (subsampling to 128 points × ∼ 1000 points)

Algorithm: PointNet

- Contextual Segmentation: using the global structure

Complexity: very low (superpoint graph ∼ 1000 sp)

Algorithm: ECC with Gated Recurrent Unit (GRU)

Deep Learning for 3D Point Clouds Scaling Segmentation 22 / 57

Pipeline

Semantic segmentation down to 3 sub-problems:

- Geometric Partition : into simple shapes.

Complexity: very high (clouds of 108 points)

Algorithm: `0-cut pursuit

- Superpoint embedding: learning shape descriptors

Complexity: low (subsampling to 128 points × ∼ 1000 points)

Algorithm: PointNet

- Contextual Segmentation: using the global structure

Complexity: very low (superpoint graph ∼ 1000 sp)

Algorithm: ECC with Gated Recurrent Unit (GRU)

Deep Learning for 3D Point Clouds Scaling Segmentation 22 / 57

Pipeline

Semantic segmentation down to 3 sub-problems:

- Geometric Partition : into simple shapes.

Complexity: very high (clouds of 108 points)

Algorithm: `0-cut pursuit

- Superpoint embedding: learning shape descriptors

Complexity: low (subsampling to 128 points × ∼ 1000 points)

Algorithm: PointNet

- Contextual Segmentation: using the global structure

Complexity: very low (superpoint graph ∼ 1000 sp)

Algorithm: ECC with Gated Recurrent Unit (GRU)

Deep Learning for 3D Point Clouds Scaling Segmentation 22 / 57

Pipeline

S1

S2

S3

S4

S5

S6

point

Voronoi Edge

(a) Point cloud

S1

S2

S3

S4

S5

S6

superpoint

superedge

(b) Superpoint graph

S1

S2

S3

S4

S5

S6 pointnet

pointnet

pointnet

pointnet

pointnet

pointnet

GRU

GRU

GRU

GRU

GRU

GRU

table

table

table

chair

chair

chair

embeddings

(c) Convolution Network

Deep Learning for 3D Point Clouds Scaling Segmentation 23 / 57

Qualitative Results: Semantic3D

Semantic3D: 3 billions points over 30 clouds

route
herbe
arbre
buisson
bâtiment
aménagement
artefact
voiture

Deep Learning for 3D Point Clouds Scaling Segmentation 24 / 57

Qualitative Results: Semantic3D

Semantic3D: 3 billions points over 30 clouds

route
herbe
arbre
buisson
bâtiment
aménagement
artefact
voiture

Deep Learning for 3D Point Clouds Scaling Segmentation 24 / 57

Qualitative Results: Semantic3D

Semantic3D: 3 billions points over 30 clouds

route
herbe
arbre
buisson
bâtiment
aménagement
artefact
voiture

Deep Learning for 3D Point Clouds Scaling Segmentation 24 / 57

Qualitative Results: Semantic3D

Semantic3D: 3 billions points over 30 clouds

route
herbe
arbre
buisson
bâtiment
aménagement
artefact
voiture

Deep Learning for 3D Point Clouds Scaling Segmentation 24 / 57

Qualitative Results: Semantic3D

Semantic3D: 3 billions points over 30 clouds

route
herbe
arbre
buisson
bâtiment
aménagement
artefact
voiture

Deep Learning for 3D Point Clouds Scaling Segmentation 24 / 57

Qualitative Results: Semantic3D

Semantic3D: 3 billions points over 30 clouds

route
herbe
arbre
buisson
bâtiment
aménagement
artefact
voiture

Deep Learning for 3D Point Clouds Scaling Segmentation 24 / 57

Quantitative Results: Semantic3D

Methode OA mIoU road grass tree bush
build-

ing
hard-
scape

arti-
fact

cars

reduced test set: 78 699 329 points
TMLC-MSR 86.2 54.2 89.8 74.5 53.7 26.8 88.8 18.9 36.4 44.7
DeePr3SS 88.9 58.5 85.6 83.2 74.2 32.4 89.7 18.5 25.1 59.2
SnapNet 88.6 59.1 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4
SegCloud 88.1 61.3 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3

SPG (Ours) 94.0 73.2 97.4 92.6 87.9 44.0 93.2 31.0 63.5 76.2
full test set: 2 091 952 018 points

TMLC-MS 85.0 49.4 91.1 69.5 32.8 21.6 87.6 25.9 11.3 55.3
SnapNet 91.0 67.4 89.6 79.5 74.8 56.1 90.9 36.5 34.3 77.2

SPG (Ours) 92.9 76.2 91.5 75.6 78.3 71.7 94.4 56.8 52.9 88.4

Deep Learning for 3D Point Clouds Scaling Segmentation 25 / 57

Qualitative Results: S3DIS

Indoor, 3 buildings, 6 stories, 200+ rooms, 600 000 000+ points

ceiling
ground
wall
column
beam
window
door
table
chair
bookcase
board
other

Deep Learning for 3D Point Clouds Scaling Segmentation 26 / 57

Qualitative Results: S3DIS

Indoor, 3 buildings, 6 stories, 200+ rooms, 600 000 000+ points

ceiling
ground
wall
column
beam
window
door
table
chair
bookcase
board
other

Deep Learning for 3D Point Clouds Scaling Segmentation 26 / 57

Qualitative Results: S3DIS

Indoor, 3 buildings, 6 stories, 200+ rooms, 600 000 000+ points

ceiling
ground
wall
column
beam
window
door
table
chair
bookcase
board
other

Deep Learning for 3D Point Clouds Scaling Segmentation 26 / 57

Qualitative Results: S3DIS

Indoor, 3 buildings, 6 stories, 200+ rooms, 600 000 000+ points

ceiling
ground
wall
column
beam
window
door
table
chair
bookcase
board
other

Deep Learning for 3D Point Clouds Scaling Segmentation 26 / 57

Qualitative Results: S3DIS

Indoor, 3 buildings, 6 stories, 200+ rooms, 600 000 000+ points

ceiling
ground
wall
column
beam
window
door
table
chair
bookcase
board
other

Deep Learning for 3D Point Clouds Scaling Segmentation 26 / 57

Qualitative Results: S3DIS

Indoor, 3 buildings, 6 stories, 200+ rooms, 600 000 000+ points

ceiling
ground
wall
column
beam
window
door
table
chair
bookcase
board
other

Deep Learning for 3D Point Clouds Scaling Segmentation 26 / 57

Résultats qualitatif: S3DIS

ceiling
ground
wall
column
beam
window
door
table
chair
bookcase
board
other

Deep Learning for 3D Point Clouds Scaling Segmentation 27 / 57

Quantitative Results: S3DIS

Method OA mAcc mIoU door board
A5 PointNet – 48.5 41.1 10.7 26.3

A5 SEGCloud – 57.3 48.9 23.1 13.0
A5 SPG 86.4 66.5 58.0 61.5 2.1

PointNet 78.5 66.2 47.6 51.6 29.4
Engelmann 81.1 66.4 49.7 51.2 30.0

SPG 85.5 73.0 62.1 68.4 8.7

Śtep Full cloud 2 cm 3 cm 4 cm
Voxelisation 0 40 24 16

Features 439 194 88 43
Partition 3428 1013 447 238

SPG computation 3800 958 436 252
Inference ×10 240 110 60 50

Total 7907 2315 1055 599
mIoU 6-fold 54.1 60.2 62.1 57.1

Deep Learning for 3D Point Clouds Scaling Segmentation 28 / 57

Quantitative Results: S3DIS

Method OA mAcc mIoU door board
A5 PointNet – 48.5 41.1 10.7 26.3

A5 SEGCloud – 57.3 48.9 23.1 13.0
A5 SPG 86.4 66.5 58.0 61.5 2.1

PointNet 78.5 66.2 47.6 51.6 29.4
Engelmann 81.1 66.4 49.7 51.2 30.0

SPG 85.5 73.0 62.1 68.4 8.7

Śtep Full cloud 2 cm 3 cm 4 cm
Voxelisation 0 40 24 16

Features 439 194 88 43
Partition 3428 1013 447 238

SPG computation 3800 958 436 252
Inference ×10 240 110 60 50

Total 7907 2315 1055 599
mIoU 6-fold 54.1 60.2 62.1 57.1

Deep Learning for 3D Point Clouds Scaling Segmentation 28 / 57

Superpoint Partition

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

e ∈ RC×m : handcrafted descriptors of the local geometry/radiometry

Superpoints: connected components of a piecewise constant
approximation of e structured by an adjacency graph.

Problem: any errors made in the partition will carry in the prediction...

Deep Learning for 3D Point Clouds Scaling Segmentation 29 / 57

Superpoint Partition

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

e ∈ RC×m : handcrafted descriptors of the local geometry/radiometry

Superpoints: connected components of a piecewise constant
approximation of e structured by an adjacency graph.

Problem: any errors made in the partition will carry in the prediction...

Deep Learning for 3D Point Clouds Scaling Segmentation 29 / 57

Superpoint Partition

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

e ∈ RC×m : handcrafted descriptors of the local geometry/radiometry

Superpoints: connected components of a piecewise constant
approximation of e structured by an adjacency graph.

Problem: any errors made in the partition will carry in the prediction...

Deep Learning for 3D Point Clouds Scaling Segmentation 29 / 57

Presentation Layout

1 Deep Learning for 3D Point Clouds

2 Learning 3D Point Clouds Segmentation

3 The Cut Pursuit Algorithm

4 Conclusion

5 Bibliography

Learning 3D Point Clouds Segmentation 30 / 57

The Pipeline

Input Point Cloud Learned Embedding

Oversegmentation True Objects
General idea:

1) Train a neural network to produce points embeddings with high contrast
at the border of objects...

2) ... Which serve as inputs of a nondifferentiable segmentation algorithm.

Learning 3D Point Clouds Segmentation 31 / 57

Adjacency Graph

G = (C ,E) a meaningful
adjacency graph

Construction is problem-dependant

Einter : set of inter-object edges

Eintra : set of intra-object edges

We want embeddings with high
contrast at Einter and similar value
at Eintra

If we get Einter right, then we have
automatically object purity!

almost!

Learning 3D Point Clouds Segmentation 32 / 57

Adjacency Graph

G = (C ,E) a meaningful
adjacency graph

Construction is problem-dependant

Einter : set of inter-object edges

Eintra : set of intra-object edges

We want embeddings with high
contrast at Einter and similar value
at Eintra

If we get Einter right, then we have
automatically object purity!

almost!

Learning 3D Point Clouds Segmentation 32 / 57

Adjacency Graph

G = (C ,E) a meaningful
adjacency graph

Construction is problem-dependant

Einter : set of inter-object edges

Eintra : set of intra-object edges

We want embeddings with high
contrast at Einter and similar value
at Eintra

If we get Einter right, then we have
automatically object purity!

almost!

Learning 3D Point Clouds Segmentation 32 / 57

Adjacency Graph

G = (C ,E) a meaningful
adjacency graph

Construction is problem-dependant

Einter : set of inter-object edges

Eintra : set of intra-object edges

We want embeddings with high
contrast at Einter and similar value
at Eintra

If we get Einter right, then we have
automatically object purity!

almost!

Learning 3D Point Clouds Segmentation 32 / 57

Adjacency Graph

G = (C ,E) a meaningful
adjacency graph

Construction is problem-dependant

Einter : set of inter-object edges

Eintra : set of intra-object edges

We want embeddings with high
contrast at Einter and similar value
at Eintra

If we get Einter right, then we have
automatically object purity!

almost!

Learning 3D Point Clouds Segmentation 32 / 57

Adjacency Graph

G = (C ,E) a meaningful
adjacency graph

Construction is problem-dependant

Einter : set of inter-object edges

Eintra : set of intra-object edges

We want embeddings with high
contrast at Einter and similar value
at Eintra

If we get Einter right, then we have
automatically object purity!

almost!

Learning 3D Point Clouds Segmentation 32 / 57

Adjacency Graph

G = (C ,E) a meaningful
adjacency graph

Construction is problem-dependant

Einter : set of inter-object edges

Eintra : set of intra-object edges

We want embeddings with high
contrast at Einter and similar value
at Eintra

If we get Einter right, then we have
automatically object purity!
almost!

Learning 3D Point Clouds Segmentation 32 / 57

Generalized Minimal Partition Problem

ei embeddings of the local geometry/radiometry

Idea: Superpoints are the component of a piecewise-constant
approximation of the embedings

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

Superpoints: regions with homogeneous embeddings

Works well with handcrafted embeddings, should work with learned ones!

Problem: a non-convex, nondifferentiable, noncontinuous problem

Good approximations can be computed with `0-cut pursuit [Landrieu &
Obozinski SIIMS 2018]

Learning 3D Point Clouds Segmentation 33 / 57

Generalized Minimal Partition Problem

ei embeddings of the local geometry/radiometry

Idea: Superpoints are the component of a piecewise-constant
approximation of the embedings

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

Superpoints: regions with homogeneous embeddings

Works well with handcrafted embeddings, should work with learned ones!

Problem: a non-convex, nondifferentiable, noncontinuous problem

Good approximations can be computed with `0-cut pursuit [Landrieu &
Obozinski SIIMS 2018]

Learning 3D Point Clouds Segmentation 33 / 57

Generalized Minimal Partition Problem

ei embeddings of the local geometry/radiometry

Idea: Superpoints are the component of a piecewise-constant
approximation of the embedings

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

Superpoints: regions with homogeneous embeddings

Works well with handcrafted embeddings, should work with learned ones!

Problem: a non-convex, nondifferentiable, noncontinuous problem

Good approximations can be computed with `0-cut pursuit [Landrieu &
Obozinski SIIMS 2018]

Learning 3D Point Clouds Segmentation 33 / 57

Generalized Minimal Partition Problem

ei embeddings of the local geometry/radiometry

Idea: Superpoints are the component of a piecewise-constant
approximation of the embedings

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

Superpoints: regions with homogeneous embeddings

Works well with handcrafted embeddings, should work with learned ones!

Problem: a non-convex, nondifferentiable, noncontinuous problem

Good approximations can be computed with `0-cut pursuit [Landrieu &
Obozinski SIIMS 2018]

Learning 3D Point Clouds Segmentation 33 / 57

Generalized Minimal Partition Problem

ei embeddings of the local geometry/radiometry

Idea: Superpoints are the component of a piecewise-constant
approximation of the embedings

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

Superpoints: regions with homogeneous embeddings

Works well with handcrafted embeddings, should work with learned ones!

Problem: a non-convex, nondifferentiable, noncontinuous problem

Good approximations can be computed with `0-cut pursuit [Landrieu &
Obozinski SIIMS 2018]

Learning 3D Point Clouds Segmentation 33 / 57

Generalized Minimal Partition Problem

ei embeddings of the local geometry/radiometry

Idea: Superpoints are the component of a piecewise-constant
approximation of the embedings

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

Superpoints: regions with homogeneous embeddings

Works well with handcrafted embeddings, should work with learned ones!

Problem: a non-convex, nondifferentiable, noncontinuous problem

Good approximations can be computed with `0-cut pursuit [Landrieu &
Obozinski SIIMS 2018]

Learning 3D Point Clouds Segmentation 33 / 57

The Problem With the GMPP

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

Let consider our pipeline:

- Let x be the parameters of the Local Point Embedder
- Let e(x) be the resulting embeddings
- Let f ?(e(x)) be the solution of the GMPP
- Let CCC the constant connected component operator on G
- The superpoints are: S = CCC(f ?(e(x)))

Let M(S) be a measure of how good an oversegmentation is
(implementing purity, border recall, etc...)

Naive Approach: `(x) = −M(CCC(f ?(e(x))))

To backpropagate we need: ∂CCC
∂f ?

and ∂f ?

∂e

Problem:Those functions are not backpropagable.

Learning 3D Point Clouds Segmentation 34 / 57

The Problem With the GMPP

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

Let consider our pipeline:
- Let x be the parameters of the Local Point Embedder

- Let e(x) be the resulting embeddings
- Let f ?(e(x)) be the solution of the GMPP
- Let CCC the constant connected component operator on G
- The superpoints are: S = CCC(f ?(e(x)))

Let M(S) be a measure of how good an oversegmentation is
(implementing purity, border recall, etc...)

Naive Approach: `(x) = −M(CCC(f ?(e(x))))

To backpropagate we need: ∂CCC
∂f ?

and ∂f ?

∂e

Problem:Those functions are not backpropagable.

Learning 3D Point Clouds Segmentation 34 / 57

The Problem With the GMPP

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

Let consider our pipeline:
- Let x be the parameters of the Local Point Embedder
- Let e(x) be the resulting embeddings

- Let f ?(e(x)) be the solution of the GMPP
- Let CCC the constant connected component operator on G
- The superpoints are: S = CCC(f ?(e(x)))

Let M(S) be a measure of how good an oversegmentation is
(implementing purity, border recall, etc...)

Naive Approach: `(x) = −M(CCC(f ?(e(x))))

To backpropagate we need: ∂CCC
∂f ?

and ∂f ?

∂e

Problem:Those functions are not backpropagable.

Learning 3D Point Clouds Segmentation 34 / 57

The Problem With the GMPP

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

Let consider our pipeline:
- Let x be the parameters of the Local Point Embedder
- Let e(x) be the resulting embeddings
- Let f ?(e(x)) be the solution of the GMPP

- Let CCC the constant connected component operator on G
- The superpoints are: S = CCC(f ?(e(x)))

Let M(S) be a measure of how good an oversegmentation is
(implementing purity, border recall, etc...)

Naive Approach: `(x) = −M(CCC(f ?(e(x))))

To backpropagate we need: ∂CCC
∂f ?

and ∂f ?

∂e

Problem:Those functions are not backpropagable.

Learning 3D Point Clouds Segmentation 34 / 57

The Problem With the GMPP

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

Let consider our pipeline:
- Let x be the parameters of the Local Point Embedder
- Let e(x) be the resulting embeddings
- Let f ?(e(x)) be the solution of the GMPP
- Let CCC the constant connected component operator on G
- The superpoints are: S = CCC(f ?(e(x)))

Let M(S) be a measure of how good an oversegmentation is
(implementing purity, border recall, etc...)

Naive Approach: `(x) = −M(CCC(f ?(e(x))))

To backpropagate we need: ∂CCC
∂f ?

and ∂f ?

∂e

Problem:Those functions are not backpropagable.

Learning 3D Point Clouds Segmentation 34 / 57

The Problem With the GMPP

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

Let consider our pipeline:
- Let x be the parameters of the Local Point Embedder
- Let e(x) be the resulting embeddings
- Let f ?(e(x)) be the solution of the GMPP
- Let CCC the constant connected component operator on G
- The superpoints are: S = CCC(f ?(e(x)))

Let M(S) be a measure of how good an oversegmentation is
(implementing purity, border recall, etc...)

Naive Approach: `(x) = −M(CCC(f ?(e(x))))

To backpropagate we need: ∂CCC
∂f ?

and ∂f ?

∂e

Problem:Those functions are not backpropagable.

Learning 3D Point Clouds Segmentation 34 / 57

The Problem With the GMPP

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

Let consider our pipeline:
- Let x be the parameters of the Local Point Embedder
- Let e(x) be the resulting embeddings
- Let f ?(e(x)) be the solution of the GMPP
- Let CCC the constant connected component operator on G
- The superpoints are: S = CCC(f ?(e(x)))

Let M(S) be a measure of how good an oversegmentation is
(implementing purity, border recall, etc...)

Naive Approach: `(x) = −M(CCC(f ?(e(x))))

To backpropagate we need: ∂CCC
∂f ?

and ∂f ?

∂e

Problem:Those functions are not backpropagable.

Learning 3D Point Clouds Segmentation 34 / 57

The Problem With the GMPP

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

Let consider our pipeline:
- Let x be the parameters of the Local Point Embedder
- Let e(x) be the resulting embeddings
- Let f ?(e(x)) be the solution of the GMPP
- Let CCC the constant connected component operator on G
- The superpoints are: S = CCC(f ?(e(x)))

Let M(S) be a measure of how good an oversegmentation is
(implementing purity, border recall, etc...)

Naive Approach: `(x) = −M(CCC(f ?(e(x))))

To backpropagate we need: ∂CCC
∂f ?

and ∂f ?

∂e

Problem:Those functions are not backpropagable.

Learning 3D Point Clouds Segmentation 34 / 57

The Problem With the GMPP

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj] ,

Let consider our pipeline:
- Let x be the parameters of the Local Point Embedder
- Let e(x) be the resulting embeddings
- Let f ?(e(x)) be the solution of the GMPP
- Let CCC the constant connected component operator on G
- The superpoints are: S = CCC(f ?(e(x)))

Let M(S) be a measure of how good an oversegmentation is
(implementing purity, border recall, etc...)

Naive Approach: `(x) = −M(CCC(f ?(e(x))))

To backpropagate we need: ∂CCC
∂f ?

and ∂f ?

∂e

Problem:Those functions are not backpropagable.

Learning 3D Point Clouds Segmentation 34 / 57

Graph-Structured Contrastive Loss

We propose a surrogate loss to learn meaningful embeddings

`(e) =
1

|E |

 ∑
(i,j)∈Eintra

φ (ei − ej) +
∑

(i,j)∈Einter

µi,jψ (ei − ej)

 ,

φ minimum at 0, ψ maximum at 0

φ(x) = δ(
√
‖x‖2/δ2 + 1− 1)

ψ(x) = max (1− ‖x‖, 0)

Promotes homogeneity within objects and contrast at their borders

µi,j : weight of inter-edges

Learning 3D Point Clouds Segmentation 35 / 57

Graph-Structured Contrastive Loss

We propose a surrogate loss to learn meaningful embeddings

`(e) =
1

|E |

 ∑
(i,j)∈Eintra

φ (ei − ej) +
∑

(i,j)∈Einter

µi,jψ (ei − ej)

 ,

φ minimum at 0, ψ maximum at 0

φ(x) = δ(
√
‖x‖2/δ2 + 1− 1)

ψ(x) = max (1− ‖x‖, 0)

Promotes homogeneity within objects and contrast at their borders

µi,j : weight of inter-edges

Learning 3D Point Clouds Segmentation 35 / 57

Graph-Structured Contrastive Loss

We propose a surrogate loss to learn meaningful embeddings

`(e) =
1

|E |

 ∑
(i,j)∈Eintra

φ (ei − ej) +
∑

(i,j)∈Einter

µi,jψ (ei − ej)

 ,

φ minimum at 0, ψ maximum at 0

φ(x) = δ(
√
‖x‖2/δ2 + 1− 1)

ψ(x) = max (1− ‖x‖, 0)

Promotes homogeneity within objects and contrast at their borders

µi,j : weight of inter-edges

Learning 3D Point Clouds Segmentation 35 / 57

Graph-Structured Contrastive Loss

We propose a surrogate loss to learn meaningful embeddings

`(e) =
1

|E |

 ∑
(i,j)∈Eintra

φ (ei − ej) +
∑

(i,j)∈Einter

µi,jψ (ei − ej)

 ,

φ minimum at 0, ψ maximum at 0

φ(x) = δ(
√
‖x‖2/δ2 + 1− 1)

ψ(x) = max (1− ‖x‖, 0)

Promotes homogeneity within objects and contrast at their borders

µi,j : weight of inter-edges

Learning 3D Point Clouds Segmentation 35 / 57

Cross-Partition Weighting Strategy, cont’d

µU,V = µ
min (| U |, | V |)
| (U,V) | for (U,V) ∈ E µi,j = µU,V for all (i , j) ∈ (U,V)

Role of µi,j critical: assess impact
of missed edge.

Operate on G = (V, E) adjacency
graph of cross-partition between
superpoints and real objects.

superpoint

majority object

trespassing

interface

µLW,LD =

µRW,RD =

Learning 3D Point Clouds Segmentation 36 / 57

Results

We require 5 times less superpoints for similar performance!

Learning 3D Point Clouds Segmentation 37 / 57

Illustration

Input cloud Ground truth objects LPE embeddings

Graph-LPE (ours) VCCS, Papon et al. 2013 Lin et al. 2018

Learning 3D Point Clouds Segmentation 38 / 57

Illustration

Input cloud Ground truth objects LPE embeddings

Graph-LPE (ours) VCCS, Papon et al. 2013 Lin et al. 2018

Learning 3D Point Clouds Segmentation 39 / 57

Results

Method OA mAcc mIoU
6-fold cross validation

PointNet 2017 78.5 66.2 47.6
Engelmann et al. in 2017 81.1 66.4 49.7

PointNet++ 2017 81.0 67.1 54.5
Engelmann et al. in 2018 84.0 67.8 58.3

SPG 2018 85.5 73.0 62.1
PointCNN 2018 88.1 75.6 65.4

Graph-LPE + SPG (ours) 87.8 77.5 67.6
Fold 5

PointNet 2017 - 49.0 41.1
Engelmann et al. in 2018 84.2 61.8 52.2

pointCNN 2018 85.9 63.9 57.3
SPG 2018 86.4 66.5 58.0

PCCN 2018 - 67.0 58.3
Graph-LPE + SPG (ours) 87.8 69.1 61.5

Table: S3DIS

Method OA mAcc mIoU
PointNet 2017 79.7 47.0 34.4

Engelmann 2018 79.7 57.6 35.6
Engelmann 2017 80.6 49.7 36.2

3P-RNN 2018 87.8 54.1 41.6
Graph-LPE + SPG (ours) 85.2 62.4 49.7

Table: vKITTI

Learning 3D Point Clouds Segmentation 40 / 57

Illustration

Input Cloud Oversegmentation

prediction Ground Truth

Learning 3D Point Clouds Segmentation 41 / 57

Illustration

Input Cloud Oversegmentation

prediction Ground Truth

Learning 3D Point Clouds Segmentation 42 / 57

Presentation Layout

1 Deep Learning for 3D Point Clouds

2 Learning 3D Point Clouds Segmentation

3 The Cut Pursuit Algorithm

4 Conclusion

5 Bibliography

The Cut Pursuit Algorithm 43 / 57

the Cut-Pursuit Algorithm

A working-set approach to graph-structured spatial regularization

Joint work with Guillaume Obozinski and Hugo Raguet

Initially designed for graph-total variation minimization

Can be generalized to the nonconvex setting of the GMMP.

Main Idea: exploiting the coarseness of the solutions of such problem.

L. Landrieu and G. Obozinski. Cut Pursuit: Fast Algorithms to Learn Piecewise
Constant Functions. In AISTATS, 2016
L. Landrieu and G. Obozinski. Cut pursuit: Fast Algorithms to Learn Piecewise
Constant Functions on General Weighted Graphs. SIAM Journal on Imaging Sciences,
2017
H. Raguet and L. Landrieu. Cut-pursuit Algorithm for Regularizing Nonsmooth
Functionals With Graph Total Variation. In ICML, 2018

The Cut Pursuit Algorithm 44 / 57

the Cut-Pursuit Algorithm

A working-set approach to graph-structured spatial regularization

Joint work with Guillaume Obozinski and Hugo Raguet

Initially designed for graph-total variation minimization

Can be generalized to the nonconvex setting of the GMMP.

Main Idea: exploiting the coarseness of the solutions of such problem.

L. Landrieu and G. Obozinski. Cut Pursuit: Fast Algorithms to Learn Piecewise
Constant Functions. In AISTATS, 2016
L. Landrieu and G. Obozinski. Cut pursuit: Fast Algorithms to Learn Piecewise
Constant Functions on General Weighted Graphs. SIAM Journal on Imaging Sciences,
2017
H. Raguet and L. Landrieu. Cut-pursuit Algorithm for Regularizing Nonsmooth
Functionals With Graph Total Variation. In ICML, 2018

The Cut Pursuit Algorithm 44 / 57

the Cut-Pursuit Algorithm

A working-set approach to graph-structured spatial regularization

Joint work with Guillaume Obozinski and Hugo Raguet

Initially designed for graph-total variation minimization

Can be generalized to the nonconvex setting of the GMMP.

Main Idea: exploiting the coarseness of the solutions of such problem.

L. Landrieu and G. Obozinski. Cut Pursuit: Fast Algorithms to Learn Piecewise
Constant Functions. In AISTATS, 2016
L. Landrieu and G. Obozinski. Cut pursuit: Fast Algorithms to Learn Piecewise
Constant Functions on General Weighted Graphs. SIAM Journal on Imaging Sciences,
2017
H. Raguet and L. Landrieu. Cut-pursuit Algorithm for Regularizing Nonsmooth
Functionals With Graph Total Variation. In ICML, 2018

The Cut Pursuit Algorithm 44 / 57

the Cut-Pursuit Algorithm

A working-set approach to graph-structured spatial regularization

Joint work with Guillaume Obozinski and Hugo Raguet

Initially designed for graph-total variation minimization

Can be generalized to the nonconvex setting of the GMMP.

Main Idea: exploiting the coarseness of the solutions of such problem.

L. Landrieu and G. Obozinski. Cut Pursuit: Fast Algorithms to Learn Piecewise
Constant Functions. In AISTATS, 2016
L. Landrieu and G. Obozinski. Cut pursuit: Fast Algorithms to Learn Piecewise
Constant Functions on General Weighted Graphs. SIAM Journal on Imaging Sciences,
2017
H. Raguet and L. Landrieu. Cut-pursuit Algorithm for Regularizing Nonsmooth
Functionals With Graph Total Variation. In ICML, 2018

The Cut Pursuit Algorithm 44 / 57

the Cut-Pursuit Algorithm

A working-set approach to graph-structured spatial regularization

Joint work with Guillaume Obozinski and Hugo Raguet

Initially designed for graph-total variation minimization

Can be generalized to the nonconvex setting of the GMMP.

Main Idea: exploiting the coarseness of the solutions of such problem.

L. Landrieu and G. Obozinski. Cut Pursuit: Fast Algorithms to Learn Piecewise
Constant Functions. In AISTATS, 2016
L. Landrieu and G. Obozinski. Cut pursuit: Fast Algorithms to Learn Piecewise
Constant Functions on General Weighted Graphs. SIAM Journal on Imaging Sciences,
2017
H. Raguet and L. Landrieu. Cut-pursuit Algorithm for Regularizing Nonsmooth
Functionals With Graph Total Variation. In ICML, 2018

The Cut Pursuit Algorithm 44 / 57

Objective

x? = arg minx∈RV f (x) +
∑

v∈V gv (x) +
∑

(u,v)∈E w(u,v) |xu − xv |

differentiable

dir. derivative in] − ∞,∞]
ex: |·| , ιΩ(·) graph total variation

- Optimization problem strutured by G = (V ,E ,w)

- Fairly general formulation

- Includes inverse problems: f (x) = ‖Ax − y‖2

- L1 fidelity: f (x) = 0, gv (x) = |xv − yv |
- Fused lasso regularization: gv (x) = |xv |
- No convexity requirement.

The Cut Pursuit Algorithm 45 / 57

Objective

x? = arg minx∈RV f (x) +
∑

v∈V gv (x) +
∑

(u,v)∈E w(u,v) |xu − xv |

differentiable

dir. derivative in] − ∞,∞]
ex: |·| , ιΩ(·) graph total variation

- Optimization problem strutured by G = (V ,E ,w)

- Fairly general formulation

- Includes inverse problems: f (x) = ‖Ax − y‖2

- L1 fidelity: f (x) = 0, gv (x) = |xv − yv |
- Fused lasso regularization: gv (x) = |xv |
- No convexity requirement.

The Cut Pursuit Algorithm 45 / 57

Objective

x? = arg minx∈RV f (x) +
∑

v∈V gv (x) +
∑

(u,v)∈E w(u,v) |xu − xv |

differentiable

dir. derivative in] − ∞,∞]
ex: |·| , ιΩ(·) graph total variation

- Optimization problem strutured by G = (V ,E ,w)

- Fairly general formulation

- Includes inverse problems: f (x) = ‖Ax − y‖2

- L1 fidelity: f (x) = 0, gv (x) = |xv − yv |
- Fused lasso regularization: gv (x) = |xv |
- No convexity requirement.

The Cut Pursuit Algorithm 45 / 57

Objective

x? = arg minx∈RV f (x) +
∑

v∈V gv (x) +
∑

(u,v)∈E w(u,v) |xu − xv |

differentiable

dir. derivative in] − ∞,∞]
ex: |·| , ιΩ(·) graph total variation

- Optimization problem strutured by G = (V ,E ,w)

- Fairly general formulation

- Includes inverse problems: f (x) = ‖Ax − y‖2

- L1 fidelity: f (x) = 0, gv (x) = |xv − yv |

- Fused lasso regularization: gv (x) = |xv |
- No convexity requirement.

The Cut Pursuit Algorithm 45 / 57

Objective

x? = arg minx∈RV f (x) +
∑

v∈V gv (x) +
∑

(u,v)∈E w(u,v) |xu − xv |

differentiable

dir. derivative in] − ∞,∞]
ex: |·| , ιΩ(·) graph total variation

- Optimization problem strutured by G = (V ,E ,w)

- Fairly general formulation

- Includes inverse problems: f (x) = ‖Ax − y‖2

- L1 fidelity: f (x) = 0, gv (x) = |xv − yv |
- Fused lasso regularization: gv (x) = |xv |

- No convexity requirement.

The Cut Pursuit Algorithm 45 / 57

Objective

x? = arg minx∈RV f (x) +
∑

v∈V gv (x) +
∑

(u,v)∈E w(u,v) |xu − xv |

differentiable

dir. derivative in] − ∞,∞]
ex: |·| , ιΩ(·) graph total variation

- Optimization problem strutured by G = (V ,E ,w)

- Fairly general formulation

- Includes inverse problems: f (x) = ‖Ax − y‖2

- L1 fidelity: f (x) = 0, gv (x) = |xv − yv |
- Fused lasso regularization: gv (x) = |xv |
- No convexity requirement.

The Cut Pursuit Algorithm 45 / 57

Motivation

- TV regularization ⇒ solution
piecewise constant.

- What if we knew this partition in
advance?

- We could solve the problem on a
much smaller reduced graph.

- TV regularization constrained to
piecewise constant solutions wrt a
partition of G ⇔ TV regularization
wrt. the reduced graph.

The Cut Pursuit Algorithm 46 / 57

Motivation

- TV regularization ⇒ solution
piecewise constant.

- What if we knew this partition in
advance?

- We could solve the problem on a
much smaller reduced graph.

- TV regularization constrained to
piecewise constant solutions wrt a
partition of G ⇔ TV regularization
wrt. the reduced graph.

The Cut Pursuit Algorithm 46 / 57

Motivation

- TV regularization ⇒ solution
piecewise constant.

- What if we knew this partition in
advance?

- We could solve the problem on a
much smaller reduced graph.

- TV regularization constrained to
piecewise constant solutions wrt a
partition of G ⇔ TV regularization
wrt. the reduced graph.

The Cut Pursuit Algorithm 46 / 57

Motivation

- TV regularization ⇒ solution
piecewise constant.

- What if we knew this partition in
advance?

- We could solve the problem on a
much smaller reduced graph.

- TV regularization constrained to
piecewise constant solutions wrt a
partition of G ⇔ TV regularization
wrt. the reduced graph.

The Cut Pursuit Algorithm 46 / 57

Motivation

- TV regularization ⇒ solution
piecewise constant.

- What if we knew this partition in
advance?

- We could solve the problem on a
much smaller reduced graph.

- TV regularization constrained to
piecewise constant solutions wrt a
partition of G ⇔ TV regularization
wrt. the reduced graph.

The Cut Pursuit Algorithm 46 / 57

Principle

1 Start with a trivial partition
P = {V }

2 Solve problem on reduced graph
induced by P

3 Refine current partition P
4 Critical point found.

Provable convergence in finite
number of steps.

In practice only a few iterations
necessary.

The Cut Pursuit Algorithm 47 / 57

Principle

1 Start with a trivial partition
P = {V }

2 Solve problem on reduced graph
induced by P

3 Refine current partition P
4 Critical point found.

Provable convergence in finite
number of steps.

In practice only a few iterations
necessary.

The Cut Pursuit Algorithm 47 / 57

Principle

1 Start with a trivial partition
P = {V }

2 Solve problem on reduced graph
induced by P

3 Refine current partition P

4 Critical point found.

Provable convergence in finite
number of steps.

In practice only a few iterations
necessary.

The Cut Pursuit Algorithm 47 / 57

Principle

1 Start with a trivial partition
P = {V }

2 Solve problem on reduced graph
induced by P

3 Refine current partition P

4 Critical point found.

Provable convergence in finite
number of steps.

In practice only a few iterations
necessary.

The Cut Pursuit Algorithm 47 / 57

Principle

1 Start with a trivial partition
P = {V }

2 Solve problem on reduced graph
induced by P

3 Refine current partition P

4 Critical point found.

Provable convergence in finite
number of steps.

In practice only a few iterations
necessary.

The Cut Pursuit Algorithm 47 / 57

Principle

1 Start with a trivial partition
P = {V }

2 Solve problem on reduced graph
induced by P

3 Refine current partition P

4 Critical point found.

Provable convergence in finite
number of steps.

In practice only a few iterations
necessary.

The Cut Pursuit Algorithm 47 / 57

Principle

1 Start with a trivial partition
P = {V }

2 Solve problem on reduced graph
induced by P

3 Refine current partition P

4 Critical point found.

Provable convergence in finite
number of steps.

In practice only a few iterations
necessary.

The Cut Pursuit Algorithm 47 / 57

Principle

1 Start with a trivial partition
P = {V }

2 Solve problem on reduced graph
induced by P

3 Refine current partition P
4 Critical point found.

Provable convergence in finite
number of steps.

In practice only a few iterations
necessary.

The Cut Pursuit Algorithm 47 / 57

Principle

1 Start with a trivial partition
P = {V }

2 Solve problem on reduced graph
induced by P

3 Refine current partition P
4 Critical point found.

Provable convergence in finite
number of steps.

In practice only a few iterations
necessary.

The Cut Pursuit Algorithm 47 / 57

Principle

1 Start with a trivial partition
P = {V }

2 Solve problem on reduced graph
induced by P

3 Refine current partition P
4 Critical point found.

Provable convergence in finite
number of steps.

In practice only a few iterations
necessary.

The Cut Pursuit Algorithm 47 / 57

Refinement step

Objective: add degrees of liberty to the reduced problem to decrease F as
much as possible

Solution: use first order information at current solution x to split along a
steep descent direction

find d (x) ∈ arg min
d∈DV

F ′(x , d) ,

with directional derivability:

F ′(x , d) =
∑
v∈V
dv>0

δ+
v (x)−

∑
v∈V
dv<0

δ−v (x) +
∑

(u,v)∈E
xu=xv

w(u,v) |du − dv | .

In practice: pick steepest direction in finite set DV :

Direction set:
smooth case (gv = 0 for all v ∈ V): D = {−1,+1}
nonsmooth case: D = {−1, 0,+1}
Steepest direction as a grapĥ cut problem.

The Cut Pursuit Algorithm 48 / 57

Refinement step

Objective: add degrees of liberty to the reduced problem to decrease F as
much as possible
Solution: use first order information at current solution x to split along a
steep descent direction

find d (x) ∈ arg min
d∈DV

F ′(x , d) ,

with directional derivability:

F ′(x , d) =
∑
v∈V
dv>0

δ+
v (x)−

∑
v∈V
dv<0

δ−v (x) +
∑

(u,v)∈E
xu=xv

w(u,v) |du − dv | .

In practice: pick steepest direction in finite set DV :

Direction set:
smooth case (gv = 0 for all v ∈ V): D = {−1,+1}
nonsmooth case: D = {−1, 0,+1}
Steepest direction as a grapĥ cut problem.

The Cut Pursuit Algorithm 48 / 57

Refinement step

Objective: add degrees of liberty to the reduced problem to decrease F as
much as possible
Solution: use first order information at current solution x to split along a
steep descent direction

find d (x) ∈ arg min
d∈DV

F ′(x , d) ,

with directional derivability:

F ′(x , d) =
∑
v∈V
dv>0

δ+
v (x)−

∑
v∈V
dv<0

δ−v (x) +
∑

(u,v)∈E
xu=xv

w(u,v) |du − dv | .

In practice: pick steepest direction in finite set DV :

Direction set:
smooth case (gv = 0 for all v ∈ V): D = {−1,+1}
nonsmooth case: D = {−1, 0,+1}
Steepest direction as a grapĥ cut problem.

The Cut Pursuit Algorithm 48 / 57

Refinement step

Objective: add degrees of liberty to the reduced problem to decrease F as
much as possible
Solution: use first order information at current solution x to split along a
steep descent direction

find d (x) ∈ arg min
d∈DV

F ′(x , d) ,

with directional derivability:

F ′(x , d) =
∑
v∈V
dv>0

δ+
v (x)−

∑
v∈V
dv<0

δ−v (x) +
∑

(u,v)∈E
xu=xv

w(u,v) |du − dv | .

In practice: pick steepest direction in finite set DV :

Direction set:
smooth case (gv = 0 for all v ∈ V): D = {−1,+1}
nonsmooth case: D = {−1, 0,+1}
Steepest direction as a grapĥ cut problem.

The Cut Pursuit Algorithm 48 / 57

Implementation and variants

Reduced problem: proximal algorithm (Preconditoned Forward
Douglas-Rachford) on reduced graph

Refinement: graph cut on full graph with Boykov’s augmenting path.

Can be extended to multidimensional data (heuristic).

Can be extended to the GMPP (heuristic).

Can be fully parallelized, even the graph cuts-based phase.

H. Raguet and L. Landrieu. Preconditioning of a Generalized Forward-Backward
Splitting and Application to Optimization on Graphs. SIAM Journal on Imaging
Sciences, 2015.

The Cut Pursuit Algorithm 49 / 57

Implementation and variants

Reduced problem: proximal algorithm (Preconditoned Forward
Douglas-Rachford) on reduced graph

Refinement: graph cut on full graph with Boykov’s augmenting path.

Can be extended to multidimensional data (heuristic).

Can be extended to the GMPP (heuristic).

Can be fully parallelized, even the graph cuts-based phase.

H. Raguet and L. Landrieu. Preconditioning of a Generalized Forward-Backward
Splitting and Application to Optimization on Graphs. SIAM Journal on Imaging
Sciences, 2015.

The Cut Pursuit Algorithm 49 / 57

Implementation and variants

Reduced problem: proximal algorithm (Preconditoned Forward
Douglas-Rachford) on reduced graph

Refinement: graph cut on full graph with Boykov’s augmenting path.

Can be extended to multidimensional data (heuristic).

Can be extended to the GMPP (heuristic).

Can be fully parallelized, even the graph cuts-based phase.

H. Raguet and L. Landrieu. Preconditioning of a Generalized Forward-Backward
Splitting and Application to Optimization on Graphs. SIAM Journal on Imaging
Sciences, 2015.

The Cut Pursuit Algorithm 49 / 57

Implementation and variants

Reduced problem: proximal algorithm (Preconditoned Forward
Douglas-Rachford) on reduced graph

Refinement: graph cut on full graph with Boykov’s augmenting path.

Can be extended to multidimensional data (heuristic).

Can be extended to the GMPP (heuristic).

Can be fully parallelized, even the graph cuts-based phase.

H. Raguet and L. Landrieu. Preconditioning of a Generalized Forward-Backward
Splitting and Application to Optimization on Graphs. SIAM Journal on Imaging
Sciences, 2015.

The Cut Pursuit Algorithm 49 / 57

Implementation and variants

Reduced problem: proximal algorithm (Preconditoned Forward
Douglas-Rachford) on reduced graph

Refinement: graph cut on full graph with Boykov’s augmenting path.

Can be extended to multidimensional data (heuristic).

Can be extended to the GMPP (heuristic).

Can be fully parallelized, even the graph cuts-based phase.

H. Raguet and L. Landrieu. Preconditioning of a Generalized Forward-Backward
Splitting and Application to Optimization on Graphs. SIAM Journal on Imaging
Sciences, 2015.

The Cut Pursuit Algorithm 49 / 57

EEG Experiment

- EEG : from 96 electrods to ∼20.000 triangles

- Underdetermined, ill-conditioned inverse problem

- Sparsity, positivity, smoothness,

- Very coarse ground truth

F : x 7→ 1
2
‖y − Φx‖2 +

∑
v∈V

(λv |xv |+ ιR+ (xv)) +
∑

(u,v)∈E

w(u,v) |xu − xv | ,

The Cut Pursuit Algorithm 50 / 57

EEG Experiment

- EEG : from 96 electrods to ∼20.000 triangles

- Underdetermined, ill-conditioned inverse problem

- Sparsity, positivity, smoothness,

- Very coarse ground truth

F : x 7→ 1
2
‖y − Φx‖2 +

∑
v∈V

(λv |xv |+ ιR+ (xv)) +
∑

(u,v)∈E

w(u,v) |xu − xv | ,

The Cut Pursuit Algorithm 50 / 57

EEG Experiment

- EEG : from 96 electrods to ∼20.000 triangles

- Underdetermined, ill-conditioned inverse problem

- Sparsity, positivity, smoothness,

- Very coarse ground truth

F : x 7→ 1
2
‖y − Φx‖2 +

∑
v∈V

(λv |xv |+ ιR+ (xv)) +
∑

(u,v)∈E

w(u,v) |xu − xv | ,

The Cut Pursuit Algorithm 50 / 57

EEG Experiment

- EEG : from 96 electrods to ∼20.000 triangles

- Underdetermined, ill-conditioned inverse problem

- Sparsity, positivity, smoothness,

- Very coarse ground truth

F : x 7→ 1
2
‖y − Φx‖2 +

∑
v∈V

(λv |xv |+ ιR+ (xv)) +
∑

(u,v)∈E

w(u,v) |xu − xv | ,

The Cut Pursuit Algorithm 50 / 57

EEG Experiment

- EEG : from 96 electrods to ∼20.000 triangles

- Underdetermined, ill-conditioned inverse problem

- Sparsity, positivity, smoothness,

- Very coarse ground truth

F : x 7→ 1
2
‖y − Φx‖2 +

∑
v∈V

(λv |xv |+ ιR+ (xv)) +
∑

(u,v)∈E

w(u,v) |xu − xv | ,

The Cut Pursuit Algorithm 50 / 57

EEG Experiment

- EEG : from 96 electrods to ∼20.000 triangles

- Underdetermined, ill-conditioned inverse problem

- Sparsity, positivity, smoothness,

- Very coarse ground truth

F : x 7→ 1
2
‖y − Φx‖2 +

∑
v∈V

(λv |xv |+ ιR+ (xv)) +
∑

(u,v)∈E

w(u,v) |xu − xv | ,

The Cut Pursuit Algorithm 50 / 57

Semantic Segmentation Experiment

- Spatial Regularization of pointwise probabilistic semantic segmentation q
(from local context)

- A probability vector for each vertex

- KL-fidelity, simplex-bound, smoothness prior
F : p 7→

∑
v∈V

KL (qv , pv) +
∑
v∈V

ι4K
(pv) +

∑
(u,v)∈E

w(u,v)‖pu − pv‖1 ,

The Cut Pursuit Algorithm 51 / 57

Semantic Segmentation Experiment

- Spatial Regularization of pointwise probabilistic semantic segmentation q
(from local context)

- A probability vector for each vertex

- KL-fidelity, simplex-bound, smoothness prior
F : p 7→

∑
v∈V

KL (qv , pv) +
∑
v∈V

ι4K
(pv) +

∑
(u,v)∈E

w(u,v)‖pu − pv‖1 ,

The Cut Pursuit Algorithm 51 / 57

Semantic Segmentation Experiment

- Spatial Regularization of pointwise probabilistic semantic segmentation q
(from local context)

- A probability vector for each vertex

- KL-fidelity, simplex-bound, smoothness prior

F : p 7→
∑
v∈V

KL (qv , pv) +
∑
v∈V

ι4K
(pv) +

∑
(u,v)∈E

w(u,v)‖pu − pv‖1 ,

The Cut Pursuit Algorithm 51 / 57

Semantic Segmentation Experiment

- Spatial Regularization of pointwise probabilistic semantic segmentation q
(from local context)

- A probability vector for each vertex

- KL-fidelity, simplex-bound, smoothness prior
F : p 7→

∑
v∈V

KL (qv , pv) +
∑
v∈V

ι4K
(pv) +

∑
(u,v)∈E

w(u,v)‖pu − pv‖1 ,

The Cut Pursuit Algorithm 51 / 57

Semantic Segmentation Experiment

- Spatial Regularization of pointwise probabilistic semantic segmentation q
(from local context)

- A probability vector for each vertex

- KL-fidelity, simplex-bound, smoothness prior
F : p 7→

∑
v∈V

KL (qv , pv) +
∑
v∈V

ι4K
(pv) +

∑
(u,v)∈E

w(u,v)‖pu − pv‖1 ,

The Cut Pursuit Algorithm 51 / 57

Presentation Layout

1 Deep Learning for 3D Point Clouds

2 Learning 3D Point Clouds Segmentation

3 The Cut Pursuit Algorithm

4 Conclusion

5 Bibliography

Conclusion 52 / 57

Conclusion

Our paradigm for graph-structured learning and optimization:

- Exploit the spatial regularity of the solution to increase speed and
precision.

- Use neural networks to learn the inputs and parameters of efficient
optimization algorithms.

- Use graph-structured optimization to compute the structure of neural
network adapted to the data.

All our work is online:

m loicland/superpoint-graph 252 ú 75 �

m loicland/cut-pursuit 22 ú 7 �

m 1a7r0ch3/parallel-cut-pursuit very soon!

Conclusion 53 / 57

loicland/superpoint-graph
loicland/cut-pursuit
1a7r0ch3/parallel-cut-pursuit

Conclusion

Our paradigm for graph-structured learning and optimization:

- Exploit the spatial regularity of the solution to increase speed and
precision.

- Use neural networks to learn the inputs and parameters of efficient
optimization algorithms.

- Use graph-structured optimization to compute the structure of neural
network adapted to the data.

All our work is online:

m loicland/superpoint-graph 252 ú 75 �

m loicland/cut-pursuit 22 ú 7 �

m 1a7r0ch3/parallel-cut-pursuit very soon!

Conclusion 53 / 57

loicland/superpoint-graph
loicland/cut-pursuit
1a7r0ch3/parallel-cut-pursuit

Conclusion

Our paradigm for graph-structured learning and optimization:

- Exploit the spatial regularity of the solution to increase speed and
precision.

- Use neural networks to learn the inputs and parameters of efficient
optimization algorithms.

- Use graph-structured optimization to compute the structure of neural
network adapted to the data.

All our work is online:

m loicland/superpoint-graph 252 ú 75 �

m loicland/cut-pursuit 22 ú 7 �

m 1a7r0ch3/parallel-cut-pursuit very soon!

Conclusion 53 / 57

loicland/superpoint-graph
loicland/cut-pursuit
1a7r0ch3/parallel-cut-pursuit

Conclusion

Our paradigm for graph-structured learning and optimization:

- Exploit the spatial regularity of the solution to increase speed and
precision.

- Use neural networks to learn the inputs and parameters of efficient
optimization algorithms.

- Use graph-structured optimization to compute the structure of neural
network adapted to the data.

All our work is online:

m loicland/superpoint-graph 252 ú 75 �

m loicland/cut-pursuit 22 ú 7 �

m 1a7r0ch3/parallel-cut-pursuit very soon!

Conclusion 53 / 57

loicland/superpoint-graph
loicland/cut-pursuit
1a7r0ch3/parallel-cut-pursuit

Presentation Layout

1 Deep Learning for 3D Point Clouds

2 Learning 3D Point Clouds Segmentation

3 The Cut Pursuit Algorithm

4 Conclusion

5 Bibliography

Bibliography 54 / 57

Bibliography I

Qi et. al.2017a Qi, C. R., Su, H., Mo, K., & Guibas, L. J. Pointnet: Deep learning on
point sets for 3d classification and segmentation. CVPR, 2017
Gaidon2016 Gaidon, A., Wang, Q., Cabon, Y., & Vig, E. Virtual worlds as proxy for
multi-object tracking analysis. ,CVPR2016.
Engelmann2017 Engelmann, F., Kontogianni, T., Hermans, A. & Leibe, B. Exploring
spatial context for 3d semantic segmentation of point clouds. CVPR, DRMS
Workshop, 2017.
Hackel2017i Timo Hackel and N. Savinov and L. Ladicky and Jan D. Wegner and K.
Schindler and M. Pollefeys, SEMANTIC3D.NET: A new large-scale point cloud
classification benchmark,ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences,2017
Armeni2016 Iro Armeni and Ozan Sener and Amir R. Zamir and Helen Jiang and
Ioannis Brilakis and Martin Fischer and Silvio Savarese, 3D Semantic Parsing of
Large-Scale Indoor Spaces, CVPR, 2016
Demantke2011 Demantke, J., Mallet, C., David, N. & Vallet, B. Dimensionality based
scale selection in 3D lidar point clouds. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 2011.
Weinmann2015 Weinmann, M., Jutzi, B., Hinz, S. & Mallet, C., Semantic point
cloud interpretation based on optimal neighborhoods, relevant features and efficient
classifiers. ISPRS Journal of Photogrammetry and Remote Sensing, 2015.
Landrieu2017a Landrieu, L., Raguet, H., Vallet, B., Mallet, C., & Weinmann, M. A
structured regularization framework for spatially smoothing semantic labelings of 3D
point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 2017.

Bibliography 55 / 57

Bibliography II

Boulch2017 Boulch, Alexandre, Le Saux, Bertrand, and Audebert, Nicolas,
Unstructured Point Cloud Semantic Labeling Using Deep Segmentation Networks,
3DOR, 2017.
Wu2015 Wu, Z., Song, S. Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. 3D
shapenets: A deep representation for volumetric shapes. CVPR, 2015.
Riegler2017 Riegler, G., Osman Ulusoy, A., & Geiger, A. Octnet: Learning deep 3d
representations at high resolutions, CVPR, 2017.
Tchapmi2017 Tchapmi, L., Choy, C., Armeni, I., Gwak, J. & Savarese, S., Segcloud:
Semantic segmentation of 3d point clouds. 3DV, 2017.
Jampani2018, Jampani Su, H., , V. Sun, D., Maji, S., Kalogerakis, E., Yang, M. H.,
& Kautz, J., Splatnet: Sparse lattice networks for point cloud processing. CVPR2018.
Tatarchenko2018 Tatarchenko, M., Park, J., Koltun, V., & Zhou, Q. Y. Tangent
Convolutions for Dense Prediction in 3D. CVPR, 2018
Li2018 Li, Y., Bu, R., Sun, M., Wu, W., Di, X., & Chen, B. PointCNN: Convolution
On χ-Transformed Points. NIPS, 2018.
Qi2017 Qi, X., Liao, R., Jia, J., Fidler, S., & Urtasun, R. 3D Graph Neural Networks
for RGBD Semantic Segmentation. In PCVPR, 2017.
Simonovsky2017 Simonovsky, M., & Komodakis, N. Dynamic edge-conditioned filters
in convolutional neural networks on graphs. CVPR, 2017.
Landrieu&Simonovski2018 Landrieu, L., & Simonovsky, M. Large-scale point cloud
semantic segmentation with superpoint graphs. CVPR, 2018
Qi et. al.2017b Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017). Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in Neural
Information Processing Systems (pp. 5099-5108).

Bibliography 56 / 57

Non-differentiability of the naive pipeline

Non differentiability of the
CCC operator

= Tiny changes - large
consequence

Non differentiability of
f ?(e)

= non-continuous w.r.t
inputs

f ? = arg min ‖f0 − e0‖2 + ‖x1 − e1‖2 + 0.5[f0 6= f1]

1.00

1.00

1.00

1.00 1.00

1.00

1.0

Bibliography 57 / 57

Non-differentiability of the naive pipeline

Non differentiability of the
CCC operator

= Tiny changes - large
consequence

Non differentiability of
f ?(e)

= non-continuous w.r.t
inputs

f ? = arg min ‖f0 − e0‖2 + ‖x1 − e1‖2 + 0.5[f0 6= f1]

1.00

1.00

1.00

1.01 1.00

1.00

1.0

Bibliography 57 / 57

Non-differentiability of the naive pipeline

Non differentiability of the
CCC operator

= Tiny changes - large
consequence

Non differentiability of
f ?(e)

= non-continuous w.r.t
inputs

f ? = arg min ‖f0 − e0‖2 + ‖x1 − e1‖2 + 0.5[f0 6= f1]

1.00

1.00

1.00

1.01 1.00

1.00

1.0

e0 e1

Bibliography 57 / 57

Non-differentiability of the naive pipeline

Non differentiability of the
CCC operator

= Tiny changes - large
consequence

Non differentiability of
f ?(e)

= non-continuous w.r.t
inputs

f ? = arg min ‖f0 − e0‖2 + ‖x1 − e1‖2 + 0.5[f0 6= f1]

1.00

1.00

1.00

1.01 1.00

1.00

1.0

0.01 1.00

f ?0 = 0.505, f ?1 = 0.505

Bibliography 57 / 57

Non-differentiability of the naive pipeline

Non differentiability of the
CCC operator

= Tiny changes - large
consequence

Non differentiability of
f ?(e)

= non-continuous w.r.t
inputs

f ? = arg min ‖f0 − e0‖2 + ‖x1 − e1‖2 + 0.5[f0 6= f1]

1.00

1.00

1.00

1.01 1.00

1.00

1.0

−0.01 1.00

f ?1 = −0.01, f ?1 = 1.00

Bibliography 57 / 57

	Deep Learning for 3D Point Clouds
	Presentation of the Problem
	Traditional Approaches
	First Deep-Learning Approaches
	Scaling Segmentation

	Learning 3D Point Clouds Segmentation
	The Cut Pursuit Algorithm
	Conclusion
	Bibliography

