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LET'S PLAY A GAME

e Each pair reports:

» Yij=Zij+1/vN if cards the same.

Zij ~ N (0,A%)
Collect Yj; for every pair (ij).

Goal: Recover cards (up to
symmetry) purely from the

knowledeeof ¥ — 1% L




CHALLENGEL

® High-dimensional (non-convex) problem.

® No statistical consistency as N - oo.

Outside the box of “traditional” statistical learning.




HOW TO SOLVE THIS?

1
Y- X7 e values of cards: x*e€ {—1,+ 1}V

ij i l
N =

xpca = leading eigenvector of Y estimates x* (up to a sign).

BBP phase transition: A* > 1  Xpca - X™ =~ 0

Watkin, Nadal'o4 % -
Baik, BenArous, Pechet’04 A < 1 ‘XPCA X | >0

-'; PCA: not optimal error value (does not maximise the number of correctly f

{ assigned cards) ,




BAYESIAN INFERENCEL

PlrilblYy =
(:1;) ( |x) Values of cards: £e }

Posterior distribution:

P(z]Y) =

- —z; azg/f‘>2

P(x|Y):Z(;A) TG + 1) + 6z — D] [ e~

=1 157

Bayes-optimal inference = computation of marginals

. Computationally expensive in general (#P-hard) i




How do we compute the
Bayes-optimal performance?

Map to a spin glass?

Y —J




BACK TO THE CARD GAME

S; € {—1, —l—l}

Hamiltonian

Boltzmann ¢ ~5 %

distribution

Partition function

Mean-field Ising spin glass
(Sherrington-Kirkpatrick’75 model)

Jijconditioned on Si*: planted disorder




MEAN-FIELD SPIN GLASS

» Mean-field spin glass models are exactly solvable using replica

method / cavity method. (Mezard, Parisi, Nishimori, Watkin, Nadal,
Sompolinsky, many many others 70s-80s.)

» For Ising spins, under Gauge transform s; — ,57, J;; — Ji;S: S
planting is equivalent to ferromagnetic bias Jj, = 1/vVA* atT = VA

N — o©

De Almeida;
Thouless78:

Ill: N. Elimehed. © Nobel
Media 2016

David J. Thouless




MEAN-FIELD SPIN GLASS

» Mean-field spin glass models are exactly solvable using replica

method / cavity method. (Mezard, Parisi, Nishimori, Watkin, Nadal,
Sompolinsky, many many others 70s-80s.)

» For Ising spins, under Gauge transform s; — ,57, J;; — Ji;S: S
planting is equivalent to ferromagnetic bias Jj, = 1/vVA* atT = VA

N — o©

igaramagnet
‘.““v




LET’S JUMP ~40 YEARS FORWARD:




RECENT TECHNICAL PROGRESS

(by my group and colleagues)

l » Solution of low-rank matrix estimation for any noise

distribution, any (separable) prior and rank. (Lesieur, Krzakala,
LZ’15-17)

v

.

e Rigorous proof that the replica solution for Bayes-optimal
inference is correct. (Krzakala, Xu, LZ’16 and Barbier, Dia, Macris,
Krzakala, Lesieur, LZ'16)

e Approximate message passing algorithm matching the

predicted performance. (Rangan, Fletcher’12, Matsushita, Tanaka’13,
Deshpande, Montanari'i14, Lesieur, Krzakala, LZ'15-17)




LOW-RANK MATRIX (TExnsor) ESTIMATION
“GENERALISED GAME”

Bayes-optimal inference for generic prior, output, and rank

Py \/(p = 1!

ZP N 12
G B

Generate ground-truth x;* from Px. Generate Y;; from Pout.

Goal: Infer x* from Y.




LOW-RANK MATRIX ESTIMATION

e Symmetric
Stochastic Block Model

Matrix completion.

e Non-symmetric

+ (Gaussian mixture clustering.

. . Biclustering.

Submatrix localization. , ,
Dawid-Skene model for crowdsourcing.

Johnstone’s spiked covariance model.

*

+
Z2 synchronization.

+

+

Spiked Wi dels. : . :
Dist ale e Restricted Boltzmann machine with

® Tensor random weights.
+ Spiked tensor model
+ Hyper-graph clustering
+ Tensor completion.

Sub-tensor localisation




RECENT TECHNICAL PROGRESS

(by my group and colleagues)

e Solution of low-rank matrix estimation for any noise
distribution, any (separable) prior and rank. (Lesieur, Krzakala,
LZ’15-17)

§  Rigorous proof that the replica solution for Bayes-optimal
. inference is correct. (Krzakala, Xu, LZ’16 and Barbier, Dia, Macris,
¥ Krzakala, Lesieur, LZ'16)

v

e Approximate message passing algorithm matching the

predicted performance. (Rangan, Fletcher’12, Matsushita, Tanaka’13,
Deshpande, Montanari'i14, Lesieur, Krzakala, LZ'15-17)




PROPERTIES OF THE
BAYES-OPTIMAL ESTIMATOR

Theorem 1:

% log Z(Y, A) concentrates around maximum of ®(m)

) me R

m m [m m
CI>(m)=[Ex,W[logZ(A,Ax+ XW)] B ove x ~ Py
w~ N(0,])

= replica symmetric free entropy

Z(A,B) auxiliary function defined by:

1 )
gg ,A, B - P Bx—Axs2
Skl eans Gl

Proofs: Krzakala, Xu, LZ, ITW’16, Barbier, Dia, Macris, Krzakala, Lesieur, LZ16 & 18:
simpler: Lelarge, Miolane’'16; El-Alaoui, Krzakala’17




PROPERTIES OF THE
BAYES-OPTIMAL ESTIMATOR

Theorem 1:

= log Z(Y, A) concentrates around maximum of ®(m)

) me R
m m [m m
D(m) = [Ex,w[logZ’(A, Ax+ XW)] B ove x ~ Py

w~ N(0,])

Theorem 2: mean-squared-error of the Bayes-optimal estimator

MMSE = Ep (x°) — argmax ®(m)

Proofs: Krzakala, Xu, LZ, ITW’16, Barbier, Dia, Macris, Krzakala, Lesieur, LZ16 & 18:
simpler: Lelarge, Miolane’'16; El-Alaoui, Krzakala’17
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RECENT TECHNICAL PROGRESS

(by my group and colleagues)

e Solution of low-rank matrix estimation for any noise

distribution, any (separable) prior and rank. (Lesieur, Krzakala,
LZ’15-17)

e Rigorous proof that the replica solution for Bayes-optimal

inference is correct. (Krzakala, Xu, LZ’16 and Barbier, Dia, Macris,
Krzakala, Lesieur, LZ'16)

' ® Approximate message passing algorithm matching the

predicted performance. (Rangan, Fletcher’12, Matsushita, Tanaka’13,

Deshpande, Montanari'i14, Lesieur, Krzakala, LZ'15-17)



APPROXIMATE MESSAGE PASSING

AMP algorithm estimates means and variances of the marginals:

vitl = 05 flA’, BY)

N

1 21 -
3 <N ZV;)ait 1

=

f(A,B) auxiliary function defined by:

Biyd B = Z(i - PP f(A,B) =

Derived in: Rangan, Fletcher’12; Matsushita, Tanaka’13; Javanmard,
Montanari’13; Deshpande, Montanari'i4; Lesieur, Krzakala, LZ’15

Traces back to: Thouless, Anderson, Palmer’76




STATE EVOLUTION

m
O(m) =E,, llog 7 ( -

As N — oo:

o AMP-MSE given by the local maximum of the free entropy

reached ascent starting from small m/large MSE. (Proofs:
Rangan, Fletcher’12, Javanmard, Montanari'i2, Deshpande, Montanari’14)

» MMSE is given by the global maximum of the free entropy.

>

MMSE = E PX(xz) — argmax d(m)

MSE ymp = [EPX(XZ) — Mamp

free entropy

argmax®(m)




15T ORDER PHASE

TRANSITIONS




1ST ORDER PHASE TRANSITION

Slight change of the rules of the game:
P xy=plotx— 1) tolx 1 L2 (I ploy)

(sparse PCA - relevant in data-science applications to learn relevant dimensions)
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ALGORITHMIC INTERPRETATION

e Easy by approximate message passing algorithms.
e Impossible information theoretically.

e Hard phase: AMP algorithm does not achieve optimal
performance.

0.7 = 'I T / ,/
06 1MPoss 3;5

0.5 |

| %m/ “ ' :
L e

0.0 //

| |
0.97 098 0.99 1.00 1.01 102 1.03 1.04 1.05

0.1 |-

average overlap with x*

noise, A




HARD PHASE

Hard phase: Algorithms “stuck” at low accuracy for exponential time.

Diamond

Metastable diamond
= low accuracy.
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Equilibrium graphite
= high accuracy.
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Temperature (Kelvin)




HARD PHASEL

Hard phase = spinodal region

of first order phase transitions.

Algorithmic threshold shared

by spectral methods and SDPs.

Conjecture:

AMP achieves (in the large N
limit) the lowest error among
all polynomial algorithms.

Deshpande, Montanari'13: AMP
optimal within a large class of
related algorithms.

Hard phase identified in:

dense planted sub-matrix;
sparse principal component analysis;

Gaussian mixture clustering;
low-rank tensor completion;

stochastic block model
planted constraint satisfaction;

low-density parity check error
correcting codes;

generalised linear regression;
compressed sensing;

learning in binary perceptron;
phase retrieval;

committee machine; ...




Computational Threshold Phenomena for
Average-Case Problems in Statistics, Machine
Learning, and Combinatorial Optimization

STOC 2018 Workshop. June 29, 2018. Los Angeles, CA.

STOC = Symposium of the theory of computing

(Leading conference in computational complexity.)




HOW CAN ALGORITHMIC PHASE
TRANSITIONS BE USEFUL?

AIMING TO REACH THRESHOLDS GIVES NEW ALGORITHMS

» Examples (in my works):

- Spatially coupled measurements for compressed sensing.
(Krzakala, Mezard, Sausset, Sun, LZ, PRX’12)

- Non-backtracking spectral methods for sparse data.
(Krzakala, Mossel, Moore, Neeman, Sly, Zhang, L.Z, PNAS’13)

our objeoti,ves

amount of information
in the measurements




What does this type of analysis imply

for neural networks?




Hard phase identified in:

dense planted sub-matrix;
sparse principal component analysis;

Gaussian mixture clustering;
low-rank tensor completion;

stochastic block model
planted constraint satisfaction;

low-density parity check error
correcting codes;

generalised linear regression;
~compressed sensing;

O

{ learning in binary perceptron; }




LEARNING A RULE

- : ' ‘-

" Nﬁ.’:\ Y sd
e T e T

705)pg 706.)pg

2 ; - - - » _“



LEARNING A RULE

E\. = Xu= (01001010 01110011 10001100 01001011

01110000 10001100 ..... all the pixels ....)

Goal: Find a function f so that

f(XM) — 1 for a picture of a cat.

f(Xﬂ) = — | for a picture of a dog.

Is routinely done with convolutional deep neural networks.




SAMPLE COMPLEXITY

How low is the optimal sample complexity? Are we achieving it?
If not, is it because of architectures or algorithms?

airplane %.% y..=&;

woroe TEECEHEES

bird THmEVTEE FEEE Cifar1o - 50000 samples.
deer SR E S TEMRE | - How many samples are
dog [l 1o el really needed? ?ﬁ
frog E....-..- N i D A SO N S TS M8 S F S
o EREE O MEEER

oo Bl e
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OUR QUESTION: CAN A NEURAL NETWORK
LEARN A TEACHER-NEURAL NETWORK?

Teacher-network Student-network

Generates data X, n samples of p
dimensional data, e.g. random input
vectors.

o Observes X, y, the architecture of the
network.

o How does the best achievable
generalisation error depend on the
number of samples n?

Generates weights w*, e.g. iid random.

Generates labels y.

teacher-weights student-weights

data / data /
: wi - labels : Wo labels

Wae oy Wa o ¥




TEACHER-STUDENT PERCEPTRON
Gardner, Derrida’89, Gyorgyi’'9o

Single layer neural network
data X

J. Phys. A: Math. Gen. 22 (1989) 1983-1994. Printed in the UK W WelghtS

Model B in: g

Three unfinished works on the optimal storage capacity
of networks

E Gardner and B Derrida

The Institute for Advanced Studies, The Hebrew University of Jerusalem, Jerusalem, Israel

P
and Service de Physique Théorique de Saclayt, F-91191 Gif-sur-Yvette Cedex, France — 1 ; :
Y, = sign E X,W;
=1

Received 13 December 1988

[} o
p dimensions
Abstract. The optimal storage properties of three different neural network models are

studied. For two of these models the architecture of the network is a perceptron with =J n Samples
interactions, whereas for the third model the output can be an arbitrary function of the
inputs. Analytic bounds and numerical estimates of the optimal capacities and of the
minimal fraction of errors are obtained for the first two models. The third model can be

solved exactly and the exact solution is compared te the bounds and to the results of hlgh-dll I lenSIOHal 11' I |1t
numerical simulations used for the two other models,
n—> 00 p— o0

nip =a=L£(1)




Solved using the replica method in the high-dimensional limit

RAPID COMMUNICATIONS

PHYSICAL REVIEW A VOLUME 41, NUMBER 12 15 JUNE 1990

First-order transition to perfect generalization in a neural network with binary synapses

Géza Gyorgyi*
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
(Received 9 February 1990)

Learning from examples by a perceptron with binary synaptic parameters is studied. The ex-
amples are given by a reference (teacher) perceptron. It is shown that as the number of examples
increases, the network undergoes a first-order transition, where it freezes into the state of the
reference perceptron. When the transition point is approached from below, the generalization er-
ror reaches a minimal positive value, while above that point the error is constantly zero. The
transition is found to occur at agp =1.245 examples per coupling.

® Binary teacher-weights:
w*e {-1,1}

“The dashed lines represent
non-physical segments of the
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RECENT PROGRESS

o Solution of generalised linear regression for any (noisy)
activation function and any (separable) prior.

e Rigorous proof that the replica solution for the teacher-
student model is correct.

e Regions of optimality of approximate message passing
algorithm.

Barbier, Krzakala, Macris, Miolane, LZ
arXiv:1708.03395, COLT’18, PNAS’19




PHASE TRANSITIONS
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PHASE TRANSITIONS

I OO

5o ba nip = L1
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AMP algorithm
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GOING MULTI-LAYER

Committee machine
Model from Schwarze’'g2.

Proof of the replica formula, and approximate message passing Aubin, Maillard,
Barbier, Macris, Krzakala, L.Z'18, spotlight at NeurIPS’18.

weights

data
' p input units / l \
labels

Vi L=3 layers
(O Khidden units Vo Y

w learned, v, & v» fixed
O output unit

n training samples

a=nip=01 K — (]




PHASE TRANSITIONS

Yy = s1gn131gn Z + mgnZ (X,u,iwi,Z)]

l

e
—_
ot

e Specialization phase transition
= hidden units specialise to
correlate with specific features.
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PHASE TRANSITIONS

y//t o Sign [ Z Slgn Z 10,0 la ] — Bayes optimal €,4()

o+ AMP ¢/(a)

—- Discontinuous specialization

Ji§

0006000006000 00000000

e Large algorithmic gap:

Computational gap

> IT threshold: n > 7.65Kp
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> Algorithmic threshold
n > const. K%p
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a = (# of samples) /(#hidden units X input size)
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message passing

\_(stochastic) gradient descent




GRADIENT FLOW

spherical constraint
(weight decay)

X
X, (1) = — u(t)xy(1)

0X;

l

e

gradient

Where does it go in large constant time?




CHALLENGE

Analysis of randomly initialised gradient flow dynamics

in non-convex, high-dimensional, strongly correlated
models with limited number of samples
and notion of the generalisation error.




MIXED SPIKED MATRIX-TENSOR MODEL

Sarao, Biroli, Cammarota, Krzakala, Urbani, L.Z, arXiv:1812.09066

e On the same signal x* observe a matrix Y and tensor T as:

1
-y 1)l

i *+§

N2 W Cipyooiy ~ M (0,4,)

o Maximise likelihood = minimize Hamiltonian

H(x) = —
Ay\/N

i<j
SPherlcal constralnt Zx =

Spiked version of the mixed 2+p spherical spin glass model.




LANGEVIN STATE EVOLUTION

Sarao, Biroli, Cammarota, Krzakala, Urbani, L.Z, arXiv:1812.09066

Generalization of the Crisanti-Horner-Sommers-Cugliandolo-
Kurchan’93 equations to include the spike x*.

Cn (L, 1) =+ S0 m(t)za(t),
N *
= % i—1 xz(t)xz .

S 8zi(t) /Ohi(t)|ni=o0

%C(t,t') = —at)C(t,t) + Q' (m(t))m(t') + /0 dt"R(t,t")Q"(C(t,t"))C(t',t")

t,
+ / dt"R(t',t")Q'(C(¢,t")) ,
0

9 R(t,t") = —p(t)R(t,t") + / t dt"R(t, t")Q" (C(t,t"))R({", 1),
ot "

y(t) = ~thm(t) + Qm(t) + [ dt"R(t,)m(E")QUC(E ),

ot
Q(z) = 2°/(2A2) + 2P/ (pAp).




NUMERICAL INTEGRATION




ANALYTICAL SOLUTION

Gradient works




LANDSCAPE ANALYSIS
WITH KAC-RICE APPROACH

(exponentially many saddles points )

V

Trivialisation

Increasing the SNR I

; —



WHAT IS GOING ON?

... Trivialization line




LANDSCAPE ANALYSIS

Former minima develop a negative slope

/ in the direction of the spike!
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ANALYTICAL SOLUTION

Gradient works




WHERE ARE WE GOING?

Building the toolbox to understand learning from data.

» Sample complexity.
» Generalization error.
» Setting hyper parameters.

\ a—« » Better algorithms/architectures.
algorithm




MORE SPECIFICALLY ...

e Priors from another graphical model. Multi-layer compositions of

graphical models. “Feynman diagrams” of composed graphical models. Preliminary:
Manoel, Krzakala, Mézard, LZ, 1701.06981 ; Rangan, Fletcher 1706.09549; Reeves
1710.04580.

Over-parametrized networks. Teacher network mismatching the student
network. Goldt, Advani, Saxe, Krzakala, LZ, 1901.09085

Structured data. Input data coming from a generative random network. Labels

from teacher networks. Gabrie, Manoel, Barbier, Luneau, Macris, Krzakala, LZ,
NeurIPS’18, 1805.09785

o Extensive hidden layers, Resisting the replica analysis - technical challenge.

e Analyzing gradient-based algorithms. Extensions of solvable dynamical
mean-field-theory beyond spherical p-spin. Agoritas, Biroli, Urbani, Zamponi,
1710.04894




CONCLUSIONS

Many problems studied in math/statistics/signal
processing/machine learning are physics models of
disordered systems.

1st order phase transitions imply sharply-defined
algorithmically hard regions.

Identifying threshold and aiming to reach them leads
to better algorithms.

Learning with multi-layer neural networks is within
the reach of this methodology.

H
QUESTIONS




