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Context
Baseline scenario: y1, . . . , yn ∈ Cp (or Rp) i.i.d. with E[y1] = 0, E[y1y∗1 ] = Cp:

I If y1 ∼ N (0, Cp), ML estimator for Cp is the sample covariance matrix (SCM)

Ĉp =
1
n
YpY

∗
p =

1
n

n∑
i=1

yiy
∗
i

(Yp = [y1, . . . , yn] ∈ Cp×n).
I If n→∞, then, strong law of large numbers

Ĉp
a.s.−→ Cp.

or equivalently, in spectral norm∥∥Ĉp − Cp∥∥ a.s.−→ 0.

Random Matrix Regime
I No longer valid if p, n→∞ with p/n→ c ∈ (0,∞),∥∥Ĉp − Cp∥∥ 6→ 0.

I For practical p, n with p ' n, leads to dramatically wrong conclusions
I Even for p = n/100.
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The Marc̆enko–Pastur law
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D
en

sit
y

p = 50, n = 200

Figure: Histogram of the eigenvalues of Ĉp for c = 1/4, Cp = Ip.
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The Marc̆enko–Pastur law

Definition (Empirical Spectral Density)
Empirical spectral density (e.s.d.) µp of Hermitian matrix Ap ∈ Cp×p is

µp =
1
p

p∑
i=1

δλi(Ap).

Theorem (Marc̆enko–Pastur Law [Marc̆enko,Pastur’67])
Xp ∈ Cp×n with i.i.d. zero mean, unit variance entries.
As p, n→∞ with p/n→ c ∈ (0,∞), e.s.d. µp of 1

n
XpX∗p satisfies

µp
a.s.−→ µc

weakly, where
I µc({0}) = max{0, 1− c−1}
I on (0,∞), µc has continuous density fc supported on [(1−

√
c)2, (1 +

√
c)2]

fc(x) =
1

2πcx

√
(x− (1−

√
c)2)((1 +

√
c)2 − x).
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The Marc̆enko–Pastur law
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Figure: Marc̆enko-Pastur law for different limit ratios c = limp→∞ p/n.
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Spiked Models
Small rank perturbation: Cp = Ip + P , P of low rank.
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Figure: Eigenvalues of 1
n YpY T

p , eig(Cp) = {1, . . . , 1︸ ︷︷ ︸
p−4

, 2, 3, 4, 5}.
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Spiked Models

Theorem (Eigenvalues [Baik,Silverstein’06])
Let Yp = C

1
2
p Xp, with

I Xp with i.i.d. zero mean, unit variance, E[|Xp|4ij ] <∞.
I Cp = Ip + P , P = UΩU∗, where, for K fixed,

Ω = diag (ω1, . . . , ωK) ∈ RK×K , with ω1 ≥ . . . ≥ ωK > 0.

Then, as p, n→∞, p/n→ c ∈ (0,∞), denoting λm = λm( 1
n
YpY ∗p ) (λm > λm+1),

λm
a.s.−→
{

1 + ωm + c 1+ωm
ωm

> (1 +
√
c)2 , ωm >

√
c

(1 +
√
c)2 , ωm ∈ (0,

√
c].

11 / 41



Basics of Random Matrix Theory/Spiked Models 11/41

Spiked Models

Theorem (Eigenvalues [Baik,Silverstein’06])
Let Yp = C

1
2
p Xp, with

I Xp with i.i.d. zero mean, unit variance, E[|Xp|4ij ] <∞.
I Cp = Ip + P , P = UΩU∗, where, for K fixed,

Ω = diag (ω1, . . . , ωK) ∈ RK×K , with ω1 ≥ . . . ≥ ωK > 0.

Then, as p, n→∞, p/n→ c ∈ (0,∞), denoting λm = λm( 1
n
YpY ∗p ) (λm > λm+1),

λm
a.s.−→
{

1 + ωm + c 1+ωm
ωm

> (1 +
√
c)2 , ωm >

√
c

(1 +
√
c)2 , ωm ∈ (0,

√
c].

11 / 41



Basics of Random Matrix Theory/Spiked Models 12/41

Spiked Models

Theorem (Eigenvectors [Paul’07])
Let Yp = C

1
2
p Xp, with

I Xp with i.i.d. zero mean, unit variance, E[|Xp|4ij ] <∞.

I Cp = Ip + P , P = UΩU∗ =
∑K

i=1 ωiuiu
∗
i , ω1 > . . . > ωM > 0.

Then, as p, n→∞, p/n→ c ∈ (0,∞), for a, b ∈ Cp deterministic and ûi eigenvector
of λi( 1

n
YpY ∗p ),

a∗ûiû
∗
i b−

1− cω−2
i

1 + cω−1
i

a∗uiu
∗
i b · 1ωi>

√
c

a.s.−→ 0

In particular,

|û∗i ui|
2 a.s.−→

1− cω−2
i

1 + cω−1
i

· 1ωi>
√
c.
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Spiked Models
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|û
T 1
u

1
|2

p = 100

Figure: Simulated versus limiting |ûT
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varying ω1.
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Other Spiked Models

Similar results for multiple matrix models:

I Yp = 1
n

(I + P )
1
2XpX∗p (I + P )

1
2

I Yp = 1
n
XpX∗p + P

I Yp = 1
n
X∗p (I + P )X

I Yp = 1
n

(Xp + P )∗(Xp + P )
I etc.

14 / 41
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An adventurous venue

Machine Learning is not “Simple Linear Statistics”:

I data are data... and are not easily modeled
I machine learning algorithms involve non-linear functions, difficult to analyze
I recent trends go towards highly complex computer-science oriented methods: deep

neural nets.

What can we say about those?:
I Much more than we think, and actually much more than has been said so far!
I Key observation 1: In “non-trivial” (not so) large dimensional settings, machine

learning intuitions break down!
I Key observation 2: In these “non-trivial” settings, RMT explains a lot of things

and can improve algorithms!
I Key observation 3: Universality goes a long way...: RMT findings are compliant

with real data observations!
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Takeaway Message 1

“RMT Explains Why Machine Learning Intuitions
Collapse in Large Dimensions”



Application to Machine Learning/ 18/41

The curse of dimensionality and its consequences

Clustering setting in (not so) large n, p:

I GMM setting: x(a)
1 , . . . , x

(a)
na ∼ N (µa, Ca), a = 1, . . . , k

I Non-trivial task:

‖µa − µb‖ = O(1), tr (Ca − Cb) = O(√p), tr [(Ca − Cb)2] = O(p)

(non-trivial because otherwise too easy or too hard)

Classical method: spectral clustering
I Extract and cluster the dominant eigenvectors of

K = {κ(xi, xj)}ni,j=1 , κ(xi, xj) = f

(1
p
‖xi − xj‖2

)
.

I Why? Finite-dimensional intuition

18 / 41



Application to Machine Learning/ 18/41

The curse of dimensionality and its consequences

Clustering setting in (not so) large n, p:
I GMM setting: x(a)

1 , . . . , x
(a)
na ∼ N (µa, Ca), a = 1, . . . , k

I Non-trivial task:

‖µa − µb‖ = O(1), tr (Ca − Cb) = O(√p), tr [(Ca − Cb)2] = O(p)

(non-trivial because otherwise too easy or too hard)

Classical method: spectral clustering
I Extract and cluster the dominant eigenvectors of

K = {κ(xi, xj)}ni,j=1 , κ(xi, xj) = f

(1
p
‖xi − xj‖2

)
.

I Why? Finite-dimensional intuition

18 / 41



Application to Machine Learning/ 18/41

The curse of dimensionality and its consequences

Clustering setting in (not so) large n, p:
I GMM setting: x(a)

1 , . . . , x
(a)
na ∼ N (µa, Ca), a = 1, . . . , k

I Non-trivial task:

‖µa − µb‖ = O(1), tr (Ca − Cb) = O(√p), tr [(Ca − Cb)2] = O(p)

(non-trivial because otherwise too easy or too hard)

Classical method: spectral clustering
I Extract and cluster the dominant eigenvectors of

K = {κ(xi, xj)}ni,j=1 , κ(xi, xj) = f

(1
p
‖xi − xj‖2

)
.

I Why? Finite-dimensional intuition

18 / 41



Application to Machine Learning/ 18/41

The curse of dimensionality and its consequences

Clustering setting in (not so) large n, p:
I GMM setting: x(a)

1 , . . . , x
(a)
na ∼ N (µa, Ca), a = 1, . . . , k

I Non-trivial task:

‖µa − µb‖ = O(1), tr (Ca − Cb) = O(√p), tr [(Ca − Cb)2] = O(p)

(non-trivial because otherwise too easy or too hard)

Classical method: spectral clustering
I Extract and cluster the dominant eigenvectors of

K = {κ(xi, xj)}ni,j=1 , κ(xi, xj) = f

(1
p
‖xi − xj‖2

)
.

I Why? Finite-dimensional intuition

18 / 41



Application to Machine Learning/ 18/41

The curse of dimensionality and its consequences

Clustering setting in (not so) large n, p:
I GMM setting: x(a)

1 , . . . , x
(a)
na ∼ N (µa, Ca), a = 1, . . . , k

I Non-trivial task:

‖µa − µb‖ = O(1), tr (Ca − Cb) = O(√p), tr [(Ca − Cb)2] = O(p)

(non-trivial because otherwise too easy or too hard)

Classical method: spectral clustering

I Extract and cluster the dominant eigenvectors of

K = {κ(xi, xj)}ni,j=1 , κ(xi, xj) = f

(1
p
‖xi − xj‖2

)
.

I Why? Finite-dimensional intuition

18 / 41



Application to Machine Learning/ 18/41

The curse of dimensionality and its consequences

Clustering setting in (not so) large n, p:
I GMM setting: x(a)

1 , . . . , x
(a)
na ∼ N (µa, Ca), a = 1, . . . , k

I Non-trivial task:

‖µa − µb‖ = O(1), tr (Ca − Cb) = O(√p), tr [(Ca − Cb)2] = O(p)

(non-trivial because otherwise too easy or too hard)

Classical method: spectral clustering
I Extract and cluster the dominant eigenvectors of

K = {κ(xi, xj)}ni,j=1

, κ(xi, xj) = f

(1
p
‖xi − xj‖2

)
.

I Why? Finite-dimensional intuition

18 / 41



Application to Machine Learning/ 18/41

The curse of dimensionality and its consequences

Clustering setting in (not so) large n, p:
I GMM setting: x(a)

1 , . . . , x
(a)
na ∼ N (µa, Ca), a = 1, . . . , k

I Non-trivial task:

‖µa − µb‖ = O(1), tr (Ca − Cb) = O(√p), tr [(Ca − Cb)2] = O(p)

(non-trivial because otherwise too easy or too hard)

Classical method: spectral clustering
I Extract and cluster the dominant eigenvectors of

K = {κ(xi, xj)}ni,j=1 , κ(xi, xj) = f

(1
p
‖xi − xj‖2

)
.

I Why? Finite-dimensional intuition

18 / 41



Application to Machine Learning/ 18/41

The curse of dimensionality and its consequences

Clustering setting in (not so) large n, p:
I GMM setting: x(a)

1 , . . . , x
(a)
na ∼ N (µa, Ca), a = 1, . . . , k

I Non-trivial task:

‖µa − µb‖ = O(1), tr (Ca − Cb) = O(√p), tr [(Ca − Cb)2] = O(p)

(non-trivial because otherwise too easy or too hard)

Classical method: spectral clustering
I Extract and cluster the dominant eigenvectors of

K = {κ(xi, xj)}ni,j=1 , κ(xi, xj) = f

(1
p
‖xi − xj‖2

)
.

I Why? Finite-dimensional intuition

18 / 41



Application to Machine Learning/ 19/41

The curse of dimensionality and its consequences (2)

In reality, here is what happens...
Kernel Kij = exp(− 1

2p‖xi − xj‖
2) and second eigenvector v2

(xi ∼ N (±µ, Ip), µ = (2, 0, . . . , 0)T ∈ Rp).

Key observation: Under growth rate assumptions,

max
1≤i 6=j≤n

{∣∣∣1
p
‖xi − xj‖2 − τ

∣∣∣} a.s.−→ 0 , τ =
2
p

k∑
i=1

tr
na

n
Ca.

I this suggests K ' f(τ)1n1T
n!

I more importantly, in non-trivial settings, data are neither close, nor far!

19 / 41



Application to Machine Learning/ 19/41

The curse of dimensionality and its consequences (2)

In reality, here is what happens...
Kernel Kij = exp(− 1

2p‖xi − xj‖
2) and second eigenvector v2

(xi ∼ N (±µ, Ip), µ = (2, 0, . . . , 0)T ∈ Rp).

Key observation: Under growth rate assumptions,

max
1≤i 6=j≤n

{∣∣∣1
p
‖xi − xj‖2 − τ

∣∣∣} a.s.−→ 0 , τ =
2
p

k∑
i=1

tr
na

n
Ca.

I this suggests K ' f(τ)1n1T
n!

I more importantly, in non-trivial settings, data are neither close, nor far!

19 / 41



Application to Machine Learning/ 19/41

The curse of dimensionality and its consequences (2)

In reality, here is what happens...
Kernel Kij = exp(− 1

2p‖xi − xj‖
2) and second eigenvector v2

(xi ∼ N (±µ, Ip), µ = (2, 0, . . . , 0)T ∈ Rp).

Key observation: Under growth rate assumptions,

max
1≤i 6=j≤n

{∣∣∣1
p
‖xi − xj‖2 − τ

∣∣∣} a.s.−→ 0 , τ =
2
p

k∑
i=1

tr
na

n
Ca.

I this suggests K ' f(τ)1n1T
n!

I more importantly, in non-trivial settings, data are neither close, nor far!

19 / 41



Application to Machine Learning/ 19/41

The curse of dimensionality and its consequences (2)

In reality, here is what happens...
Kernel Kij = exp(− 1

2p‖xi − xj‖
2) and second eigenvector v2

(xi ∼ N (±µ, Ip), µ = (2, 0, . . . , 0)T ∈ Rp).

Key observation: Under growth rate assumptions,

max
1≤i 6=j≤n

{∣∣∣1
p
‖xi − xj‖2 − τ

∣∣∣} a.s.−→ 0 , τ =
2
p

k∑
i=1

tr
na

n
Ca.

I this suggests K ' f(τ)1n1T
n!

I more importantly, in non-trivial settings, data are neither close, nor far!

19 / 41



Application to Machine Learning/ 20/41

The curse of dimensionality and its consequences (3)
(Major) consequences:

I Most machine learning intuitions collapse
I But luckily, concentration of distances allows for Taylor expansion, linearization...
I This is where RMT kicks back in!

Theorem ([C-Benaych’16] Asymptotic Kernel Behavior)
Under growth rate assumptions, as p, n→∞,∥∥K − K̂∥∥ a.s.−→ 0, K̂ '

1
p
ZZT + JAJT + ∗

with J = [j1, . . . , jk] ∈ Rn×k, ja = (0, 1na , 0)T (the clusters!) and A ∈ Rk×k
function of:
I f(τ), f ′(τ), f ′′(τ)
I ‖µa − µb‖, tr (Ca − Cb), tr ((Ca − Cb)2), for a, b ∈ {1, . . . , k}.

ë This is a spiked model! We can study it fully!

RMT can explain tools ML engineers use everyday.
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Application to Machine Learning/ 21/41

Theoretical Findings versus MNIST

0 10 20 30 40 50
0

5 · 10−2

0.1

0.15

0.2
Eigenvalues of K

Figure: Eigenvalues of K (red) and (equivalent Gaussian model) K̂ (white), MNIST data, p = 784,
n = 192.
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Application to Machine Learning/ 22/41

Theoretical Findings versus MNIST

Figure: Leading four eigenvectors of K for MNIST data (red) and theoretical findings (blue).
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Theoretical Findings versus MNIST
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Figure: 2D representation of eigenvectors of K, for the MNIST dataset. Theoretical means and 1-
and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.
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Takeaway Message 2

“RMT Reassesses and Improves Data Processing”



Application to Machine Learning/ 25/41

Improving Kernel Spectral Clustering

Thanks to [C-Benaych’16]: Possibility to improve kernels:

I by “focusing kernels” on best discriminative statistics: tune f ′(τ), f ′′(τ)
I by “killing” non discriminative feature directions.

Example: Covariance-based discrimation, kernel f(t) = exp(− 1
2 t) versus

f(t) = (t− τ)2 (think about the surprising kernel shape!)
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Application to Machine Learning/ 26/41

Another, more striking, example: Semi-supervised Learning

Semi-supervised learning: a great idea that never worked!

I Setting: assume now
I x

(a)
1 , . . . , x(a)

na,[l]
already labelled (few),

I x
(a)
na,[l]+1, . . . , x(a)

na
unlabelled (a lot).

I Machine Learning original idea: find “scores” Fia for xi to belong to class a

F = argminF∈Rn×k

k∑
a=1

Kij
(
Fia − Fjb

)2
, F

[l]
ia = δ{xi∈Ca}.

I Explicit solution:

F [u] =
(
In[u] −D

−1
[u]K[uu]

)−1
D−1

[u]K[ul]F
[l]

where D = diag(K1n) (degree matrix) and [ul], [uu], . . . blocks of
labeled/unlabeled data.
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already labelled (few),

I x
(a)
na,[l]+1, . . . , x(a)

na
unlabelled (a lot).

I Machine Learning original idea: find “scores” Fia for xi to belong to class a

F = argminF∈Rn×k

k∑
a=1

Kij
(
Fia − Fjb

)2
, F

[l]
ia = δ{xi∈Ca}.

I Explicit solution:

F [u] =
(
In[u] −D

−1
[u]K[uu]

)−1
D−1

[u]K[ul]F
[l]

where D = diag(K1n) (degree matrix) and [ul], [uu], . . . blocks of
labeled/unlabeled data.
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The finite-dimensional intuition: What we expect
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The reality: What we see!

Setting. p = 400, n = 1000, xi ∼ N (±µ, Ip). Kernel Kij = exp(− 1
2p‖xi − xj‖

2).
Display. Scores Fik (left) and F ◦ik = Fik − 1

2 (Fi1 + Fi2) (right).

ë Score are almost all identical... and do not follow the labelled data!
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MNIST Data Example

0 50 100 150

0.8

1

1.2

Index

F
(u

)
·,

a

[F(u)]·,1 (Zeros)

Figure: Vectors [F (u)]·,a, a = 1, 2, 3, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, nl/n = 1/16, Gaussian kernel.
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Exploiting RMT to resurrect SSL

Consequences of the finite-dimensional “mismatch”

I A priori, the algorithm should not work
I Indeed “in general” it does not!
I But, luckily, after some (not clearly motivated) renormalization, it works again...

I BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, “Semi-Supervised Learning”, Chapter 4, 2009.

Our concern is this: it is frequently the case that we would be better off just discarding
the unlabeled data and employing a supervised method, rather than taking a

semi-supervised route. Thus we worry about the embarrassing situation where the
addition of unlabeled data degrades the performance of a classifier.

What RMT can do about it
I Asymptotic performance analysis: clear understanding of what we see!
I Update the algorithm and provably improve unlabelled data use.
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Asymptotic Performance Analysis

Theorem ([Mai,C’18] Asymptotic Performance of SSL)
For xi ∈ Cb unlabelled, score vector Fi,· ∈ Rk satisfies:

Fi,· −Gb → 0, Gb ∼ N (mb,Σb)

with mb ∈ Rk, Σb ∈ Rk×k function of f(τ), f ′(τ), f ′′(τ), µ1, . . . , µk, C1, . . . , Ck.

Most importantly: mb,Σb independent of nu (number of unlabelled data).

Solution: From RMT calculus (but not from ML intuition!), solution is to replace K by

K̃ ≡ PKP, P = In −
1
n

1n1T
n.

Performances:
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Experimental evidence: MNIST

Digits (0,8) (2,7) (6,9)
nu = 100

Centered kernel (RMT) 89.5±3.6 89.5±3.4 85.3±5.9
Iterated centered kernel (RMT) 89.5±3.6 89.5±3.4 85.3±5.9

Laplacian 75.5±5.6 74.2±5.8 70.0±5.5
Iterated Laplacian 87.2±4.7 86.0±5.2 81.4±6.8

Manifold 88.0±4.7 88.4±3.9 82.8±6.5
nu = 1000

Centered kernel (RMT) 92.2±0.9 92.5±0.8 92.6±1.6
Iterated centered kernel (RMT) 92.3±0.9 92.5± 0.8 92.9±1.4

Laplacian 65.6±4.1 74.4±4.0 69.5±3.7
Iterated Laplacian 92.2±0.9 92.4±0.9 92.0±1.6

Manifold 91.1±1.7 91.4±1.9 91.4±2.0

Table: Comparison of classification accuracy (%) on MNIST datasets with nl = 10. Computed over
1000 random iterations for nu = 100 and 100 for nu = 1000.
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Experimental evidence: Traffic signs (HOG features)

Class ID (2,7) (9,10) (11,18)
nu = 100

Centered kernel (RMT) 79.0±10.4 77.5±9.2 78.5±7.1
Iterated centered kernel (RMT) 85.3±5.9 89.2±5.6 90.1±6.7

Laplacian 73.8±9.8 77.3±9.5 78.6±7.2
Iterated Laplacian 83.7±7.2 88.0±6.8 87.1±8.8

Manifold 77.6±8.9 81.4±10.4 82.3±10.8
nu = 1000

Centered kernel (RMT) 83.6±2.4 84.6±2.4 88.7±9.4
Iterated centered kernel (RMT) 84.8±3.8 88.0±5.5 96.4±3.0

Laplacian 72.7±4.2 88.9±5.7 95.8±3.2
Iterated Laplacian 83.0±5.5 88.2±6.0 92.7±6.1

Manifold 77.7±5.8 85.0±9.0 90.6±8.1

Table: Comparison of classification accuracy (%) on German Traffic Sign datasets with nl = 10.
Computed over 1000 random iterations for nu = 100 and 100 for nu = 1000.
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Takeaway Message 3

“RMT Also Grasps ‘Real Data’ Processing”
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From i.i.d. to concentrated random vectors
Current Problem. Data models based on vectors of i.i.d. entries (or even only
Gaussian).

Good news. In RMT, exploitation of time and feature dimensions brings universality!,
i.e., only first moments matter irrespective of distribution.

The Solution?. Concentrated random vectors go a long way beyond!

Definition (Concentrated Random Vector)
x ∈ Rp is a concentrated random vector if, for all Lipschitz f : Rp → R, there exists
mf ∈ R, wuch that

P
(
|f(x)−mf | > ε

)
≤ e−g(ε), g increasing function.

Theorem ([Louart,C’18] [Seddik,C’19] Kernel Universality)
For xi ∼ L(µa, Ca) concentrated random vector, under the conditions of
[C-Benaych’16],

‖K − K̂‖ a.s.−→ 0, KK̂ '
1
p
ZZT + JAJT + ∗

with A only dependent on f(τ), f ′(τ), f ′′(τ), µ1, . . . , µk, C1, . . . , Ck.

ë Same result as [C-Benaych’16]. . . Universality of first two moments!
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Ok. . . so what?

Key Finding. Real images are “almost” concentrated random vectors!

Example: GAN-generated images are concentrated random vectors!
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Ok. . . so what?

38 / 41



Application to Machine Learning/ 39/41

Ok. . . so what? (2)
Results. [Seddik,C’19]
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Conclusion

Reminder of Takeaway messages:

The road ahead:
I getting away from GMM models and show universality results (concentration of

measure arguments)
I generalize the approach to problems having non-explicit solutions (such as convex

optim problems)
I deep learning, recurrent neural nets... are a very different story!
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The End

Thank you!
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