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Motivation

We consider a peer-to-peer microgrid where houses exchange energy,

and we formulate it as a large-scale stochastic optimization problem
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How to manage such network in an (almost) optimal way?
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Motivation

We will show that, for a large district microgid with
I 48 buildings

I 16 batteries

I 71 edges network

methods mixing temporal decomposition (dynamic programming) and
spatial decomposition (price or resource allocation) give better results
than the standard SDDP algorithm

I in terms of CPU time: ×3 faster

SDDP CPU time: 453’ Decomp CPU time: 128’

I in terms of cost gap: 1.5% better

SDDP policy cost: 3550 Decomp policy cost: 3490
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An abstract optimization problem

We consider the following optimization problem

V ]
0 = min

u1∈U1
ad,··· ,uN∈UN

ad

N∑
i=1

J i (ui )

s.t.
(
Θ1(u1), · · · ,ΘN(uN)

)
∈ Rad︸ ︷︷ ︸

coupling constraint

I ui ∈ U i a local decision variable

I J i : U i → R, i ∈ J1,NK a local objective

I U i
ad a subset of U i representing local constraints

I Θi : U i →Ri maps local decisions into local resources

I Rad ⊂ R1 × · · · × RN a subset representing
coupling resources constraints between units
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Prices and resources are paired

I Each resource space Ri is in bilinear pairing with a price space P i

I The product spaces R = R1 × · · · × RN and P = P1 × · · · × PN

are then paired with

〈
p , r

〉
=

N∑
i=1

〈
pi , r i

〉
I We denote by Ro

ad the polar cone of Rad

Ro
ad =

{
p ∈ P |

〈
p , r

〉
≤ 0 , ∀r ∈ Rad

}
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Price and resource value functions

For each i ∈ J1,NK
I for any price pi ∈ P i , we define the local price value

V i
0[pi ] = min

ui∈U i
ad

J i (ui ) +
〈
pi ,Θi (ui )

〉
I for any resource r i ∈ Ri , we define the local resource value

V
i

0[r i ] = min
ui∈U i

ad

J i (ui ) s.t. Θi (ui ) = r i

Theorem 1 (Upper and lower bounds for optimal value)

I For any admissible price p = (p1, · · · , pN) ∈ Ro
ad

I For any admissible resource r = (r1, · · · , rN) ∈ Rad

we have that
N∑
i=1

V i
0[pi ] ≤ V ]

0 ≤
N∑
i=1

V
i

0[r i ]
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The case of multistage stochastic optimization

V ]
0 (x1

0 , . . . , x
N
0 ) = min

X ,U
E
( N∑

i=1

T−1∑
t=0

Lit(X
i
t ,U

i
t ,Wt+1) + K i (X i

T )

)
s.t. X i

t+1 = g i
t (X i

t ,U
i
t ,Wt+1) , X i

0 = x i0

∀i ∈ J1,NK

σ(U i
t) ⊂ σ(W0, · · · ,Wt)

∀i ∈ J1,NK , ∀t ∈ J0,T − 1K(
Θ1

t (X 1
t ,U

1
t ), . . . ,ΘN

t (XN
t ,U

N
t )
)
∈Rad
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The case of multistage stochastic optimization

In this case, the abstract local price value

V i
0[pi ] = min

ui∈U i
ad

J i (ui ) +
〈
pi ,Θi (ui )

〉
corresponds to a stochastic optimal control problem

V i
0[P i ](x i0) = min

X i ,U i
E
( T−1∑

t=0

Lit(X
i
t ,U

i
t ,Wt+1) +

〈
P i
t ,Θ

i
t(X

i
t ,U

i
t)
〉

+ K i (X i
T )

)
s.t. X i

t+1 = g i
t (X i

t ,U
i
t ,Wt+1) , X i

0 = x i0

σ(U i
t ) ⊂ σ(W0, · · · ,Wt)

This local control problem can be solved by Dynamic Programming (DP)

I if the noise process W is a white noise process

I and the price process P follows a dynamics

DP leads to a collection
{
V i

t [P i ]
}
t∈J0,TK of local price value functions
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The case of multistage stochastic optimization

In the same way, the abstract local resource value

V
i

0[r i ] = min
ui∈U i

ad

J i (ui ) s.t. Θi (ui ) = r i

corresponds to a stochastic optimal control problem

V
i
0[R i ](x i0) = min

X i ,U i
E
( T−1∑

t=0

Lit(X
i
t ,U

i
t ,Wt+1) + K i (X i

T )

)
s.t. X i

t+1 = g i
t (X i

t ,U
i
t ,Wt+1) , X i

0 = x i0

σ(U i
t) ⊂ σ(W0, · · · ,Wt)

Θi
t(X

i
t ,U

i
t) = R i

t
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Mix of spatial and temporal decompositions

For any admissible coordination price process P ∈Ro
ad

and for any admissible coordination resource process R ∈Rad,

we have bounds of the optimal value V ]
0

N∑
i=1

V i
0[P i ](x i

0) ≤ V ]
0 ≤

N∑
i=1

V
i
0[R i ](x i

0)

1. To obtain the bounds, we perform spatial decompositions giving
I a collection

{
V i

0[P i ](x i
0)
}
i∈J1,NK of price local values

I a collection
{
V

i
0[R i ](x i

0)
}
i∈J1,NK of resource local values

The computation of these local values can be performed in parallel

2. To compute each local value, we perform temporal decomposition
based on Dynamic Programming: for each local unit i , we obtain
I a sequence

{
V i

t [P
i ]
}
t∈J0,TK of price local value functions

I a sequence
{
V

i
t [R i ]

}
t∈J0,TK of resource local value functions

The computation of these local values functions is done sequentially
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Mix of spatial and temporal decompositions
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Figure: The case of price decomposition
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The case of deterministic price and resource processes

We assume that W is a white noise process, and we restrict ourselves to
deterministic admissible coordination processes p ∈ Ro

ad and r ∈ Rad

I The local value functions V i
t [p

i ] and V
i

t [r
i ] are easy to compute

because they only depend on the local state variable x i

I It is easy to obtain tighter bounds by maximizing the lower bound
w.r.t. prices and minimizing the upper bound w.r.t. resources

sup
p∈Ro

ad

N∑
i=1

V i
0[pi ](x i

0) ≤ V ]
0 ≤ inf

r∈Rad

N∑
i=1

V
i
0[r i ](x i

0)
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The case of deterministic price and resource processes

We assume that W is a white noise process, and we restrict ourselves to
deterministic admissible coordination processes p ∈ Ro

ad and r ∈ Rad

The local value functions V i
t [p

i ] and V
i

t [r
i ] allow the computation of

global policies by solving (online) static optimization problems

I In the case of local price value functions, the policy is obtained as

γ
t
(x1

t , · · · , xNt ) ∈ arg min
u1
t ,··· ,uNt

E
( N∑

i=1

Lit(x
i
t , u

i
t ,Wt+1) +

N∑
i=1

V i
t+1[pi ]

(
X i

t+1

))
s.t. X i

t+1 = g i
t (x it , u

i
t ,Wt+1) , ∀i ∈ J1,NK(

Θt(x
1
t , u

1
t ), · · · ,Θt(x

N
t , u

N
t )
)
∈ Rad

I A global policy based on resource value functions is also available

Estimating the expected cost of such policies by Monte Carlo simulation
leads to a statistical upper bound of the optimal cost of the problem
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Progress status

I First, we have obtained lower and upper bounds
for a global optimization problem with coupling constraints
thanks to two spatial decomposition schemes

– price decomposition
– resource decomposition

I Second, we have computed the lower and upper bounds
by dynamic programming (temporal decomposition)

I Using the price and resource Bellman value functions,
we have devised two online policies for the global problem

I Now, we apply these decomposition schemes
to large-scale network problems
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Network and flows

Directed graph G = (V, E)

F i

Qe

I Qe
t flow through edge e,

I F i
t flow imported at node i

Let A be the node-edge incidence matrix

Each node corresponds to a
building with its own devices
(battery, hot water tank,
solar panel. . . )

At each time t ∈ J0,T − 1K,
the Kirchhoff current law
couples node and edge flows

AQt + Ft = 0
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Optimization problem at a given node
At each node i ∈ V, given a node flow process F i , we minimize the house cost

J i
V(F i ) = min

X i ,U i
E
( T−1∑

t=0

Li
t(X

i
t ,U

i
t ,W

i
t+1) + K i (X i

T )

)
subject to, for all t ∈ J0,T − 1K

i) nodal dynamics constraints (battery, hot water tank)

X i
t+1 = g i

t (X i
t ,U

i
t ,W

i
t+1)

ii) nonanticipativity constraints (future remains unknown)

σ(U i
t ) ⊂ σ(W0, · · · ,Wt+1)

iii) nodal load balance equations (demand - production = import)

∆i
t(X

i
t ,U

i
t ,W

i
t+1) = F i

t

Remarks

I Local noise W i
t in the formulation of problem at node i

I Global noise Wt+1 = (W 1
t+1, . . . ,W

N
t+1) in the nonanticipativity constraint
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Transportation cost and global optimization problem

We define the network cost as the sum over time and edges of the costs
of flows Qe

t through the edges of the network

JE(Q ) = E
( T−1∑

t=0

∑
e∈E

let (Qe
t )

)
This transportation cost is additive in space, in time and in uncertainty!

The global optimization problem is obtained by gathering all elements

V ]
0 = min

F ,Q

∑
i∈V

J iV(F i ) + JE(Q )

s.t. AQ + F = 0
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Price and resource decompositions
I Price problem

V 0[P ] = min
F ,Q

∑
i∈V

J i
V(F i ) + JE(Q ) +

〈
P ,AQ + F

〉
=
∑
i∈V

(
min
Fi

J i
V(F i ) +

〈
P i ,F i〉)

︸ ︷︷ ︸
Node i ’s subproblem

+
(

min
Q

JE(Q ) +
〈
A>P ,Q

〉)
︸ ︷︷ ︸

Network subproblem

I Resource problem

V 0[R ] = min
F ,Q

∑
i∈V

J i
V(F i ) + JE(Q ) s.t. AR + F = 0 , Q = R

=
∑
i∈V

(
min
Fi

J i
V(F i ) s.t. F i = −(AR )i

)
+
(

min
Q

JE(Q ) s.t. Q = R
)

Objective
Find deterministic processes p̂ and r̂ with a gap as small as possible

sup
p

V 0[p] ≤ V ]
0 ≤ inf

r
V 0[r ]
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Different urban configurations

3-Nodes 6-Nodes 12-Nodes

24-Nodes 48-Nodes
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Problem settings

Thanks to the periodicity of demands and electricity tariffs,
the microgrid management problem can be solved day by day

I One day horizon with a 15mn time step: T = 96

I Weather corresponds to a sunny day in Paris (June 28, 2015)

I We mix three kinds of buildings

1. battery + electrical hot water tank
2. solar panel + electrical hot water tank
3. electrical hot water tank

and suppose that all consumers are commoners sharing their devices
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Algorithms implemented on the problem

SDDP
We use the SDDP algorithm to solve the problem globally

I but noises W 1
t , · · · ,WN

t are independent node by node,
so that the support size of the noise may be huge (|supp(W i

t )|N)

I and thus we must resample the noise to be able to compute the cuts

Price decomposition
Spatial decomposition and maximization w.r.t. a deterministic price p

I Each nodal subproblem solved by a DP-like method

I Maximisation w.r.t. p by Quasi-Newton (BFGS) method

p(k+1) = p(k) + ρ(k)H(k)∇V 0[p(k)]

I Oracle ∇V 0[p] estimated by Monte Carlo (Nscen = 1, 000)

Resource decomposition
Spatial decomposition and minimization w.r.t. a deterministic resource process r
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Exact upper and lower bounds on the global problem

Network 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes
State dim. |X| 4 8 16 32 64

SDDP time 1’ 3’ 10’ 79’ 453’
SDDP LB 225.2 455.9 889.7 1752.8 3310.3

Price time 6’ 14’ 29’ 41’ 128’
Price LB 213.7 447.3 896.7 1787.0 3396.4

Resource time 3’ 7’ 22’ 49’ 91’
Resource UB 253.9 527.3 1053.7 2105.4 4016.6

For the 48-Nodes microgrid

I price decomposition is more than 3 times faster than SDDP

I price decomposition gives a (slightly) better exact lower bound than SDDP

3310.3︸ ︷︷ ︸
V 0[sddp]

≤ 3396.4︸ ︷︷ ︸
V 0[price]

≤ V ]
0 ≤ 4016.6︸ ︷︷ ︸

V 0[resource]
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Increase in execution time with state dimension

4 8 16 32 64
State dimension
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Policy evaluation by Monte Carlo (1,000 scenarios)

3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes

SDDP policy 226 ± 0.6 471 ± 0.8 936 ± 1.1 1859 ± 1.6 3550 ± 2.3

Price policy 228 ± 0.6 464 ± 0.8 923 ± 1.2 1839 ± 1.6 3490 ± 2.3
Gap +0.9 % -1.5% -1.4% -1.1% -1.7%

Resource policy 229 ± 0.6 471 ± 0.8 931 ± 1.1 1856 ± 1.6 3503 ± 2.2
Gap +1.3 % 0.0% -0.5% -0.2% -1.2%

All the cost values above are statistical upper bounds of V ]
0

For the 48-Nodes microgrid

I price policy beats SDDP policy and resource policy

V ]
0 ≤ 3490︸︷︷︸

C [price]

≤ 3503︸︷︷︸
C [resource]

≤ 3550︸︷︷︸
C [sddp]

I the exact upper bound given by resource decomposition is not so tight

3396.4︸ ︷︷ ︸
V 0[price]

≤ V ]
0 ≤ 3490︸︷︷︸

C [price]

≤ 3503︸︷︷︸
C [resource]

≤ 4016.6︸ ︷︷ ︸
V 0[resource]

gap <3% ≈ 3% >18%
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Motivation for decentralized information
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Centralized information structure

Up to now, we have studied the following centralized problem

VC
0 = min

F ,Q

(∑
i∈V

min
X i ,U i

E
( T−1∑

t=0

Li
t(X

i
t ,U

i
t ,W

i
t+1) + K i (X i

T )

)
︸ ︷︷ ︸

J iV (F i )

+E
( T−1∑

t=0

∑
e∈E

l et (Qe
t )

)
︸ ︷︷ ︸

JE (Q )

)

subject to, for all t ∈ J0,T − 1K and for all i ∈ V

AQt + Ft = 0 (network constraints)

X i
t+1 = g i

t (X i
t ,U

i
t ,W

i
t+1) (nodal dynamic constraints)

∆i
t(X

i
t ,U

i
t ,W

i
t+1) = F i

t (nodal balance equation)

σ(U i
t ) ⊂ σ(W0, · · · ,Wt+1) (information constraints)

with Wt = (W 1
t , . . . ,W N

t ) global noise process
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Decentralized information structure

Consider now the following decentralized problem

VD
0 = min

F ,Q

(∑
i∈V

min
X i ,U i

E
( T−1∑

t=0

Li
t(X

i
t ,U

i
t ,W

i
t+1) + K i (X i

T )

)
︸ ︷︷ ︸

J iV (F i )

+E
( T−1∑

t=0

∑
e∈E

l et (Qe
t )

)
︸ ︷︷ ︸

JE (Q )

)

subject to, for all t ∈ J0,T − 1K and for all i ∈ V

AQt + Ft = 0 (network constraints)

X i
t+1 = g i

t (X i
t ,U

i
t ,W

i
t+1) (nodal dynamic constraints)

∆i
t(X

i
t ,U

i
t ,W

i
t+1) = F i

t (nodal balance equation)

σ(U i
t ) ⊂ σ(W i

0 , · · · ,W i
t+1) (information constraints)

that is, the local control U i
t is a function of local noise (W i

0 , . . . ,W i
t+1)
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Upper and lower decomposed bounds are not sensitive
to the centralized or decentralized structures

V 0[p] =
∑
i∈V

V i
0[pi ] + V E0 [p] with

V i
0 [pi ] = min

X i ,U i ,F i
E
[ T−1∑

t=0

Li
t(X

i
t ,U

i
t ,W

i
t+1) +

〈
pi
t ,F

i
t

〉
+ K i (X i

T )

]
s.t. X i

t+1 = g i
t (X i

t ,U
i
t ,W

i
t+1) , X i

0 = x i
0

∆i
t(X

i
t ,U

i
t ,W

i
t+1) = F i

t

σ(U i
t ) ⊂ σ(W1, . . . ,Wt+1)
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Upper and lower decomposed bounds are not sensitive
to the centralized or decentralized structures

V 0[p] =
∑
i∈V

V i
0[pi ] + V E0 [p] with

V i
0 [pi ] = min

X i ,U i ,F i
E
[ T−1∑

t=0

Li
t(X

i
t ,U

i
t ,W

i
t+1) +

〈
pi
t ,F

i
t

〉
+ K i (X i

T )

]
s.t. X i

t+1 = g i
t (X i

t ,U
i
t ,W

i
t+1) , X i

0 = x i
0

∆i
t(X

i
t ,U

i
t ,W

i
t+1) = F i

t

σ(U i
t ) ⊂ σ(W i

1 , . . . ,W
i
t+1)

Replacing the global σ-field σ(W1, . . . ,Wt+1) by the local σ-field

σ(W i
1 , . . . ,W

i
t+1) does not make any change in this local subproblem

The lower bound V 0[p] is the same for both information structures

A similar conclusion holds true for the upper bound V 0[r ]
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Bounds for the centralized/decentralized cases

I Since Wt = (W 1
t , . . . ,W

N
t ), we have the inclusion of σ-fields

σ(W i
0 , . . . ,W

i
t ) ⊂ σ(W0, . . . ,Wt) , ∀i

We deduce that the admissible control set in case of a decentralized
information structure is smaller that the one in case of a centralized
information structure, so that we get

VC
0︸︷︷︸

centralized

≤ VD
0︸︷︷︸

decentralized

I Finally, we obtain the following sequence of inequalities

sup
p

V 0[p] ≤ VC
0 ≤ VD

0 ≤ inf
r

V 0[r ]
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Bounds for the centralized/decentralized cases

I We have obtained

≈3%︷ ︸︸ ︷
sup
p

V 0[p] ≤ VC
0 ≤ VD

0 ≤ inf
r

V 0[r ]

sup
p

V 0[p] ≤

≈18%︷ ︸︸ ︷
VC

0 ≤ VD
0 ≤ inf

r
V 0[r ]

I But what can we say about

sup
p

V 0[p] ≤ VC
0 ≤ VD

0 ≤ inf
r

V 0[r ]︸ ︷︷ ︸
Value of the gap?

sup
p

V 0[p] ≤ VC
0 ≤ VD

0︸ ︷︷ ︸
Information gap?

≤ inf
r

V 0[r ]
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Analysis of the decentralized case

For the shake of brevity, we introduce the following notation

F i
t = σ(W i

0 , . . . ,W
i
t )

Consider the constraints that have to be met at node i in the case of a
decentralized information structure

X i
t+1 = g i

t (X i
t ,U

i
t ,W

i
t+1) (nodal dynamic constraints)

∆i
t(X

i
t ,U

i
t ,W

i
t+1) = F i

t (nodal balance equation)

σ(U i
t) ⊂ F

i
t+1 (information structure)

By construction, the state X i
t is a F i

t -measurable random variable

Thanks to both the nodal balance equation and the information structure,
we deduce that the node flow F i

t is measurable w.r.t. the σ-field F i
t+1
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Analysis of the decentralized case

Suppose that (W 1, · · · ,W N) are independent random processes
Otherwise stated, we add an independence assumption in space

At time t, consider now the global coupling constraints AQt + Ft = 0.
Summing these constraints leads to the aggregate coupling constraint∑

i∈V

F i
t = 0

From the aggregate constraint and the independence assumption,
we deduce that the random variables Ft (and hence Qt)
are deterministic variables
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Analysis of the decentralized case

According to this conclusion, under the space independence assumption,
in case of a decentralized information structure, the global minimisation
problem depends on deterministic node flows f and edge flows q variables

VD
0 = min

f ,q

(∑
i∈V

J iV(f i ) + JE(q)

)
s.t. Aq + f = 0

= inf
r

(∑
i∈V

(
min
fi

J iV(f i ) s.t. f i = −(Ar)i
)

+
(

min
q

JE(q) s.t. q = r
))

= inf
r
V 0[r ]

The upper bound infr V 0[r ] and the optimal value VD
0 are the same

VD
0 = inf

r
V 0[r ]
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The information gap is high

Recall the sequence of inequalities relating optimal values and bounds

sup
p

V 0[p] ≤

≈18%︷ ︸︸ ︷
VC

0 ≤ VD
0 ≤ inf

r
V 0[r ]

Gathering all the theoretical and numerical results obtained, we get

sup V 0[p] ≤ VC
0︸ ︷︷ ︸

≈3%

, VC
0 ≤ VD

0︸ ︷︷ ︸
≈18%

, VD
0 = inf V 0[r ]

that provides a way to quantify the information gap in our application
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Conclusions

I We have two algorithms that decompose spatially and temporally
a large-scale optimization problem under coupling constraints.

I In our case study, price decomposition beats SDDP
for large instances (≥ 24 nodes)

– in computing time (more than twice faster)
– in precision (more than 1% better)

I Price decomposition gives (in a surprising way) a tight lower bound,
whereas the upper bound given by resource decomposition is weak
(which is understandable on the case study)

I We have studied the case of a decentralized information structure
to explain this weakness (information gap)

I Can we obtain tighter bounds?
If we select properly price P and resource R processes among the
class of Markovian processes (instead of deterministic ones) we can
obtain “better” nodal value functions (with an extended local state)
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