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Optimal quantization

Definition
Let ρ be a probability density on a compact domain Ω of Rd .

The quantization error of ρ by N points is

GN(y1, . . . , yN) =

∫
Ω

min
1≤i≤N

‖x − yi‖2 dρ(x),

which measures how well ρ is approximated by Y = (y1, . . . , yN).

Optimal quantization problem:

OQ(ρ,N) := min
(Rd )N

GN (1)

A cornerstone of approximation theory, meshing, clustering, etc.
[Foundations of quantization for probability distributions, Graf and Luschgy, 2000]
Denote Vori (Y ) = {x | ∀j , ‖x − yi‖2 ≤ ‖x − yj‖2} the Voronoi cells. Then,

GN(y1, . . . , yN) =
∑

1≤i≤N

∫
Vori (Y )

‖x − yi‖2 dρ(x).
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Towards Lloyd’s algorithm

Proposition
Assume that all the cells have positive mass (i.e. ρ(Vori (Y )) > 0). Then,

∇yiGN(y1, . . . , yN) = 2ρ(Vori (Y )) · (yi − baryρ(Vori (Y )),

where baryρ(X ) =
∫
X
xdρ(x)/ρ(X ).

Critical points of the quantization energy = centroidal Voronoi tessellations
[Du,Faber,Gunzburger ’99]
There exists critical point with (very) high energy.
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Lloyd’s algorithm
Optimal quantization: minY=(y1,...,yN )∈RNd

∑N
i=1

∫
Vori (Y )

‖x − yi‖2 dρ(x)

Non-convex optimization problem. NP-hard when ρ = 1
N

∑
j δxj even in the

plane [Mahajan et al. 09] or for k = 2 in high dimensions [Dasgupta 08].

Lloyd’s algorithm = first-order algorithm to minimize the quantization energy
Used intensively in statistics (e.g. clustering) when N is small.
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Iterates of Lloyd’s algorithm

it 0 it 4 it 8 it 12 it 16

Lloyd’s algorithm has a rather slow convergence.
... and can (in principle) get stuck at configurations with high quant. error.
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Optimal uniform quantization
Let Ω ⊆ Rd compact convex, and P(Ω) = probability measures on Ω.

The Wasserstein distance Wp on P(Ω) is defined through optimal transport:

Wp
p(µ, ρ) = min

{∫
Ω×Ω

‖x − y‖p dγ(x , y) | Π1#γ = µ,Π2#γ = ρ

}
.

Optimal quantization: minY=(y1,...,yN )∈ΩN W2
2(ρ, µ) : spt(µ) ⊂ {y1, . . . , yN}

Optimal uniform quantization: minY=(y1,...,yN )∈ΩN W2
2
(
ρ, 1

N

∑
i δyi
)

Applications: Stippling of grayscale images [de Goes et al. 2012],

ρ y1, . . . , yN
Optimal location problems [Bourne, Schmitzer, Wirth, 2018], Generation of
polycrystalline microstructures [Bourne et al. 2020], etc.
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Semi-discrete optimal transport

The uniform quantization energy involves a semi-discrete OT problem:

FN : Y = (y1, . . . , yN) ∈ ΩN 7→W2
2

(
1
N

∑
i

δyi , ρ

)
By Kantorovich duality,we have

W2
2

(
1
N

∑
i

δyi , ρ

)
= max

Φ=(φ1,...,φN )

∫
min
j

(‖x − yj‖2 − φj)dρ(x) +
∑

1≤i≤N

1
N
φi ,

which can be re-written using the optimal Φ = ΦY as

FN(Y ) =
∑

1≤i≤N

∫
Lagi (Y ,ΦY )

‖x − yi‖2 dρ(x)

where Laguerre cells are defined for Y ∈ ΩN and Φ ∈ RN :

Lagi (Y ,Φ)
def
=
{
x ∈ Rd | ∀j , ‖x − yi‖2 − φi ≤ ‖x − yj‖2 − φj

}
Indeed, given pairwise distinct points Y ∈ ΩN , the maximizer ΦY ∈ RN is
unique and characterized by ρ(Lagi (Y ,ΦY )) = 1

N : all cells have mass 1
N .
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Optimal quantization energy
We minimize FN : Y ∈ ΩN 7→W2

2
( 1
N

∑
i δyi , ρ

)
.

W2
2 is convex on P(Ω), yet FN is not convex on ΩN .

Proposition
FN is semi-concave on ΩN , it is C1 on a dense open set and

FN(Y ) =
∑
i

∫
Lagi (Y ,ΦY )

‖x − yi‖2 dρ(x),

∇yiFN(Y ) =
2
N

(yi − bi (Y ))

where bi (Y ) = N
∫
Lagi (Y ,ΦY )

xdρ(x) is the barycenter of the ith cell.

Point cloud Y Lagi (Y ,ΦY )

−N
2∇yi FN(Y )
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Lloyd’s (uniform) algorithm

Lloyd’s algorithm

Optimal quant. of a density ρ ∈ P(Ω),

min
Y

min
α∈∆N

W2
2

(∑
i

αiδyi , ρ

)
︸ ︷︷ ︸

GN (Y )

Algorithm: given Y ∈ ΩN

1. Compute the Voronoi cells of Y
and their barycenters bi w.r.t. to ρ.
2. Set yi := bi and repeat.

Lloyd’s “uniform” algorithm

Optimal uniform quantization of ρ,

min
Y

W2
2

(
1
N

∑
i

δyi , ρ

)
︸ ︷︷ ︸

FN (Y )

Algorithm: given Y ∈ ΩN

1. Compute the Laguerre cells
Lagi (Y ,ΦY ) solving the OT problem
between ρ and µ = 1

N

∑
i δyi and their

barycenters bi (Y ).
2. Set yi := bi (Y ) and repeat.

Lloyd’s algorithms = fixed point algorithms for cancelling ∇GN or ∇FN .
The iterates converge (up to subseq.) to a critical point of FN or GN .
In both cases, there may exist critical points with high energy
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Low- and high-energy critical points of FN
The minimal value for the optimal quantization is always at most of order
N−2/d . For optimal uniform quantization the same estimate can depend on
ρ, but, if ρ is bounded from above and below on a bounded convex set
Ω ∈ Rd , then we have the same bound

min
ΩN

FN ≈
(

1
N

)2/d

.

Minimizers for FN are critical, i.e. they satisfy yi = bi (Y ) for every i .
Due to the non-convexity of FN , some critical points are NOT minimizers:

ρ N = 20 N = 40

Figure: Two high-energy critical point for ρ ≡ 1 uniform on Ω = [0, 1]2: FN(Y ) = Θ(1).
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Convergence for well-chosen initial data

Experimentally, Lloyd’s algorithms converge well. Even better, when the
point cloud Y = (y1, . . . , yN) is not chosen adversely, one observes

W2
2

(
1
N

∑
i

δbi (Y ), ρ

)
� 1.

ρ Y N

BN = (b1(Y N), . . . , bN(Y N))

BN ,N = 7280

I.e., a single step Lloyd algorithm yields a good approximation of ρ.

Our main theorem explains this behaviour.
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Convergence under a dimensionality condition

Theorem
Let Ω ⊆ Rd be convex and let ρ ∈ P(Ω). Consider a point cloud Y in ΩN s.t.

∀i 6= j , ‖yi − yj‖ ≥ ε

Then, W2
2

(
1
N

∑N
i=1 δbi (Y ), ρ

)
≤ cst(d ,Ω) · ε

1−d

N .

In particular, if ε ≈ N−1/β , then W2
2

(
1
N

∑N
i=1 δbi (Y ), ρ

)
≤ CN

d−1
β −1. This

upper bound goes to zero as N → +∞ provided that β > d − 1.
When β = d , the upper bound of the theorem is

FN(BN) = W2
2

(
1
N

∑
i

δyi , ρ

)
.

(
1
N

)1/d

.
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2

}
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W2
2

(
1
N

N∑
i=1

δbi (Y ), ρ

)
≥ 1

12
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N
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(
1
N

)1/d

.

This does not match the upper bound on minΩN FN : minΩN FN .
( 1
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.

Yet, this is sharp taking d = 1, ρ = 1
N on [−1, 0] and ρ = (1− 1

N ) on (0, 1]
(or, in higher dimension, products of this distribution).
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Numerical example with d − 1 < β < d
Point are sampled from the Von Koch fractal (dimension β = ln 4

ln 3 ' 1.26),
ρ ≡ 1 on Ω = [0, 1]2.

N = 257

Numerically, it seems that W2
2(µN , ρ) ' N−1.01, while our upper bound

would give an exponent of d−1
β − 1 ' −0.207.
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Point are sampled from the Von Koch fractal (dimension β = ln 4

ln 3 ' 1.26),
ρ ≡ 1 on Ω = [0, 1]2.

N = 1025

Numerically, it seems that W2
2(µN , ρ) ' N−1.01, while our upper bound

would give an exponent of d−1
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Numerical example with d − 1 < β < d
Point are sampled from the Von Koch fractal (dimension β = ln 4

ln 3 ' 1.26),
ρ ≡ 1 on Ω = [0, 1]2.

N = 4097

Numerically, it seems that W2
2(µN , ρ) ' N−1.01, while our upper bound

would give an exponent of d−1
β − 1 ' −0.207.
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Numerical example with d − 1 < β < d
Point are sampled from the Von Koch fractal (dimension β = ln 4

ln 3 ' 1.26),
ρ ≡ 1 on Ω = [0, 1]2.

N = 16385

Numerically, it seems that W2
2(µN , ρ) ' N−1.01, while our upper bound

would give an exponent of d−1
β − 1 ' −0.207.
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Main theorem: sketch of proof
We assume: ∀i 6= j , ‖yi − yj‖ ≥ ε

Main idea: There cannot be “too many” Laguerre cells that are “elongated”

We use the concavity of the Laguerre cells w.r.t the weights Φ:

1
2Lagi (Y , 0)⊕ 1

2Lagi (Y ,Φ) ⊂ Lagi (Y ,Φ/2)

=⇒ if Lagi (Y ,Φ) is “elongated”, then |Lagi (Y ,
1
2Φ)| is “large”:

The (Lagi (Y ,
1
2Φ))i do not overlap:

∑N
i=1 |Lagi (Y ,

1
2Φ)| ≤ |Ω| . Yet,

|Lagi (Y ,
1
2Φ)| ≥ cεd−1 diam(Lagi (Y ,Φ)).

W1

(
1
N

∑N
i=1 δbi (Y ), ρ

)
. 1

N

∑N
i=1 diam(Lagi (Y ,Φ)) . ε1−d

N , and

W2
2 ≤ CW1.
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Outline

1 Optimal quantization

2 Optimal uniform quantization

3 Non-asymptotic bounds (from a NeurIPS paper with Q. Mérigot and C.
Sarrazin)

4 Limit measures of critical points (from C. Sarrazin’s PhD thesis)

5 Stable critical points of Lloyd’s energy (from an ongoing work with A. Figalli
and Q. Mérigot)
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Lagrangian critical measures

Let Y = (y1, . . . , yN) be a critical point for the optimal uniform quantization of a
density ρ. Let µN := 1

N

∑N
i=1 δyi be the associated empirical measure. What

about the weak limits of µN , N →∞?

Definition (Lagrangian critical measures)
A measure µ is said to be Lagrangian critical if in the unique optimal transport
plan γ (induced by a map T such that T#ρ = µ) for the quadratic cost from ρ to
µ we do have ∫

ξ(y) · (y − x)dγ(x , y) = 0

for all ξ ∈ C (Ω;Rd).
This corresponds to saying that µ−a.e. y is the barycenter of the conditional
distribution γy on T−1(y).

The empirical measures µN are Lagrangian critical, and so is any weak limit µ.
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Dimensional decomposition of Lagrangian critical measures

Let µ be a Lagrangian critical measure and define the sets
Sk = {y ∈ spt(µ) : dim(T−1(y)) = d − k}. Then µ =

∑d
k=0 µ

k where
µk = µ|Sk

. We then have
Every set Sk is contained in a countable union of C 1,1 k−dimensional
hypersurfaces.
For k = d , we have µk = ρ|Sd

. In particular, if µ is absolutely continuous,
then µ = ρ.
For k = 0, 1, d the measure µk is absolutely continuous w.r.t. the
Hk -Hausdorff measure. This is conjectured for all k , but not proven.
In particular, if d = 2, µ fully decomposes into three layers, one per
dimension.
If moreover µ is a limit of empirical measures corresponding to discrete
critical points YN , then µ0 = 0 (also proven for d = 1, 2 only but conjectured
in the general case).
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A Lagrangian critical measure with 1D and 2D parts

From left to right, the support of the probability density ρ (constant on this
support), a critical point cloud for FN which is not a minimizer and its limit
measure. The limit measure µ is not uniform on the vertical segment (but it
is uniform on the lower rectangle).
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Stable critical points
A critical point is stable if it is a local minimizer of FN . In general, iteratvie
algorithms converge to stable critical points.
Typical example of an unstable critical point:
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Stable critical points in 2D

Proposition
For every dimension d there exists c > 0 such that if

Hd−1(Lagi (Y ,ΦY ) ∩ Lagj(Y ,ΦY )) ≥ cN−
d−1
d

for some i 6= j , then the configuration is unstable.

Elaborating on this, but only for d = 2 one can prove (work in progress)

Theorem
In dimension d = 2, ∃c > 0 s.t. for any a stable critical point Y ∈ RdN , we have
diam(Lagi (Y ,ΦY )) ≤ cN−1/d . In particular

W2

(
1
N

∑
i

δyi , ρ

)
≤ c

(
1
N

)1/d

.
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Another unstable critical point

Ω = [−π, π]2, ρ ≡ 1/(4π2),N = 102,Y 0 = uniform grid.
Iterates follow Lloyd’s algorithm: Y k+1 = (b1(Y k), . . . , bN(Y k)).

k=1

Lloyd’s iterate escape the critical point due to numerical error + instability.
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Iterates follow Lloyd’s algorithm: Y k+1 = (b1(Y k), . . . , bN(Y k)).
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Another unstable critical point

Ω = [−π, π]2, ρ ≡ 1/(4π2),N = 102,Y 0 = uniform grid.
Iterates follow Lloyd’s algorithm: Y k+1 = (b1(Y k), . . . , bN(Y k)).

k=161

Lloyd’s iterate escape the critical point due to numerical error + instability.
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Summary and Perspectives
Take-home message: Despite the non-convexity, gradient descent strategies for
optimal uniform quantization problem, i.e.

min
Y∈ΩN

W2
2

(
1
N

∑
i

δyi , ρ

)
often lead to low energy configurations. This is related to several points raised in
this presentation

when the points are far enough from each other the corresponding
barycenters provide good values for the quantization energy
when the limit configuration is not too much concentrated the limit measure
coincides with ρ
iterations generically converge to stable critical points, which have good
values for the energy

(Some) open questions:
Can estimates be improved if ρ is bounded from above and below?
Can estimates be improved when ρ is supported on a submanifold of Rd?
What can we say about the limits of discrete critical points in dim. d > 2?
What about stable critical points in dimension d > 2?
Are non-optimal grids with reasonable energy unstable?

Thank you for your attention!
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