Points critiques dans la quantification optimale uniforme

Filippo Santambrogio Université Claude Bernard Lyon 1 et IUF

10 ans du Labez Bézout - Marne la Vallée, 14 juin 2022

Overview

Optimal quantization

- Optimal uniform quantization
- Non-asymptotic bounds (from a NeurIPS paper with Q. Mérigot and C. Sarrazin)
- 4 Limit measures of critical points (from C. Sarrazin's PhD thesis)
- Stable critical points of Lloyd's energy (from an ongoing work with A. Figalli and Q. Mérigot)

Outline

Optimal quantization

- 2 Optimal uniform quantization
- 3 Non-asymptotic bounds (from a NeurIPS paper with Q. Mérigot and C. Sarrazin)
- 4 Limit measures of critical points (from C. Sarrazin's PhD thesis)
- 5 Stable critical points of Lloyd's energy (from an ongoing work with A. Figalli and Q. Mérigot)

Definition

Let ρ be a probability density on a compact domain Ω of \mathbb{R}^d .

• The quantization error of ρ by N points is

$$G_N(y_1,\ldots,y_N) = \int_{\Omega} \min_{1\leq i\leq N} \|x-y_i\|^2 \,\mathrm{d}\rho(x),$$

which measures how well ρ is approximated by $Y = (y_1, \dots, y_N)$.

Definition

Let ρ be a probability density on a compact domain Ω of \mathbb{R}^d .

• The quantization error of ρ by N points is

$$G_N(y_1,\ldots,y_N) = \int_{\Omega} \min_{1\leq i\leq N} \|x-y_i\|^2 \,\mathrm{d}\rho(x),$$

which measures how well ρ is approximated by $Y = (y_1, \dots, y_N)$. • Optimal quantization problem:

$$OQ(\rho, N) := \min_{(\mathbb{R}^d)^N} G_N$$
(1)

Definition

Let ρ be a probability density on a compact domain Ω of \mathbb{R}^d .

• The quantization error of ρ by N points is

$$G_N(y_1,\ldots,y_N) = \int_{\Omega} \min_{1\leq i\leq N} \|x-y_i\|^2 \,\mathrm{d}\rho(x),$$

which measures how well ρ is approximated by $Y = (y_1, \dots, y_N)$. • Optimal quantization problem:

$$OQ(\rho, N) := \min_{(\mathbb{R}^d)^N} G_N$$
(1)

• A cornerstone of approximation theory, meshing, clustering, etc. [Foundations of quantization for probability distributions, Graf and Luschgy, 2000]

Definition

Let ρ be a probability density on a compact domain Ω of \mathbb{R}^d .

• The quantization error of ρ by N points is

$$G_N(y_1,\ldots,y_N) = \int_{\Omega} \min_{1\leq i\leq N} \|x-y_i\|^2 \,\mathrm{d}\rho(x),$$

which measures how well ρ is approximated by $Y = (y_1, \dots, y_N)$. • Optimal quantization problem:

$$OQ(\rho, N) := \min_{(\mathbb{R}^d)^N} G_N$$
(1)

• A cornerstone of approximation theory, meshing, clustering, etc.

[Foundations of quantization for probability distributions, Graf and Luschgy, 2000] • Denote $\operatorname{Vor}_i(Y) = \{x \mid \forall j, \|x - y_i\|^2 \le \|x - y_j\|^2\}$ the Voronoi cells. Then,

$$\mathcal{G}_N(y_1,\ldots,y_N) = \sum_{1\leq i\leq N} \int_{\operatorname{Vor}_i(Y)} \|x-y_i\|^2 \,\mathrm{d}
ho(x).$$

4 / 27

Towards Lloyd's algorithm

Proposition

Assume that all the cells have positive mass (i.e. $\rho(Vor_i(Y)) > 0$). Then,

$$abla_{y_i} G_N(y_1, \ldots, y_N) = 2\rho(\operatorname{Vor}_i(Y)) \cdot (y_i - \operatorname{bary}_{\rho}(\operatorname{Vor}_i(Y)),$$

where $\operatorname{bary}_{\rho}(X) = \int_X x d\rho(x) / \rho(X)$.

Towards Lloyd's algorithm

Proposition

Assume that all the cells have positive mass (i.e. $\rho(Vor_i(Y)) > 0$). Then,

$$abla_{y_i} G_N(y_1, \ldots, y_N) = 2\rho(\operatorname{Vor}_i(Y)) \cdot (y_i - \operatorname{bary}_{\rho}(\operatorname{Vor}_i(Y)),$$

where $\operatorname{bary}_{\rho}(X) = \int_X x d\rho(x) / \rho(X)$.

• Critical points of the quantization energy = centroidal Voronoi tessellations [Du,Faber,Gunzburger '99]

Towards Lloyd's algorithm

Proposition

Assume that all the cells have positive mass (i.e. $\rho(Vor_i(Y)) > 0$). Then,

$$abla_{y_i} G_N(y_1, \ldots, y_N) = 2\rho(\operatorname{Vor}_i(Y)) \cdot (y_i - \operatorname{bary}_{\rho}(\operatorname{Vor}_i(Y)),$$

where $\operatorname{bary}_{\rho}(X) = \int_X x d\rho(x) / \rho(X)$.

- Critical points of the quantization energy = centroidal Voronoi tessellations [Du,Faber,Gunzburger '99]
- There exists critical point with (very) high energy.

Optimal quantization: $\min_{Y=(y_1,...,y_N)\in\mathbb{R}^{Nd}}\sum_{i=1}^N \int_{\operatorname{Vor}_i(Y)} \|x-y_i\|^2 d\rho(x)$

Non-convex optimization problem. NP-hard when ρ = ¹/_N Σ_j δ_{xj} even in the plane [Mahajan et al. 09] or for k = 2 in high dimensions [Dasgupta 08].

Optimal quantization: $\min_{Y=(y_1,...,y_N)\in\mathbb{R}^{Nd}}\sum_{i=1}^N \int_{\operatorname{Vor}_i(Y)} \|x-y_i\|^2 d\rho(x)$

- Non-convex optimization problem. NP-hard when $\rho = \frac{1}{N} \sum_{j} \delta_{x_{j}}$ even in the plane [Mahajan et al. 09] or for k = 2 in high dimensions [Dasgupta 08].
- Lloyd's algorithm = first-order algorithm to minimize the quantization energy

Optimal quantization: $\min_{Y=(y_1,...,y_N)\in\mathbb{R}^{Nd}}\sum_{i=1}^N \int_{\operatorname{Vor}_i(Y)} \|x-y_i\|^2 d\rho(x)$

- Non-convex optimization problem. NP-hard when $\rho = \frac{1}{N} \sum_{j} \delta_{x_{j}}$ even in the plane [Mahajan et al. 09] or for k = 2 in high dimensions [Dasgupta 08].
- Lloyd's algorithm = first-order algorithm to minimize the quantization energy
- Used intensively in statistics (e.g. clustering) when N is small.

Optimal quantization: $\min_{Y=(y_1,...,y_N)\in\mathbb{R}^{Nd}}\sum_{i=1}^N \int_{\operatorname{Vor}_i(Y)} \|x-y_i\|^2 d\rho(x)$

- Non-convex optimization problem. NP-hard when $\rho = \frac{1}{N} \sum_{j} \delta_{x_{j}}$ even in the plane [Mahajan et al. 09] or for k = 2 in high dimensions [Dasgupta 08].
- Lloyd's algorithm = first-order algorithm to minimize the quantization energy
- Used intensively in statistics (e.g. clustering) when N is small.

• Lloyd's algorithm: given $Y = (y_1, \dots, y_N) \in \Omega^N$

Optimal quantization: $\min_{Y=(y_1,...,y_N)\in\mathbb{R}^{Nd}}\sum_{i=1}^N \int_{\operatorname{Vor}_i(Y)} \|x-y_i\|^2 d\rho(x)$

- Non-convex optimization problem. NP-hard when $\rho = \frac{1}{N} \sum_{j} \delta_{x_{j}}$ even in the plane [Mahajan et al. 09] or for k = 2 in high dimensions [Dasgupta 08].
- Lloyd's algorithm = first-order algorithm to minimize the quantization energy
- Used intensively in statistics (e.g. clustering) when N is small.

- Lloyd's algorithm: given $Y = (y_1, \ldots, y_N) \in \Omega^N$
 - 1. Compute the **Voronoi cells** of Y

Optimal quantization: $\min_{Y=(y_1,...,y_N)\in\mathbb{R}^{Nd}}\sum_{i=1}^N \int_{\operatorname{Vor}_i(Y)} \|x-y_i\|^2 d\rho(x)$

- Non-convex optimization problem. NP-hard when $\rho = \frac{1}{N} \sum_{j} \delta_{x_{j}}$ even in the plane [Mahajan et al. 09] or for k = 2 in high dimensions [Dasgupta 08].
- Lloyd's algorithm = first-order algorithm to minimize the quantization energy
- Used intensively in statistics (e.g. clustering) when N is small.

- Lloyd's algorithm: given $Y = (y_1, \dots, y_N) \in \Omega^N$
 - 1. Compute the **Voronoi cells** of Y and their **barycenters** b_i w.r.t. to ρ .
 - 2. Set $y_i := b_i$ and **repeat**.

Iterates of Lloyd's algorithm

- Lloyd's algorithm has a rather slow convergence.
- ... and can (in principle) get stuck at configurations with high quant. error.

Outline

1 Optimal quantization

- 2 Optimal uniform quantization
 - 3 Non-asymptotic bounds (from a NeurIPS paper with Q. Mérigot and C. Sarrazin)
- 4 Limit measures of critical points (from C. Sarrazin's PhD thesis)
- 5 Stable critical points of Lloyd's energy (from an ongoing work with A. Figalli and Q. Mérigot)

• Let $\Omega \subseteq \mathbb{R}^d$ compact convex, and $\mathcal{P}(\Omega) = \text{probability measures on } \Omega$.

 Let Ω ⊆ ℝ^d compact convex, and P(Ω) = probability measures on Ω. The Wasserstein distance W_p on P(Ω) is defined through optimal transport:

$$W_{\rho}^{p}(\mu,\rho) = \min\left\{\int_{\Omega\times\Omega} \|x-y\|^{p} d\gamma(x,y) \mid \Pi_{1\#}\gamma = \mu, \Pi_{2\#}\gamma = \rho\right\}.$$

 Let Ω ⊆ ℝ^d compact convex, and P(Ω) = probability measures on Ω. The Wasserstein distance W_p on P(Ω) is defined through optimal transport:

$$W_{p}^{p}(\mu,\rho) = \min\left\{\int_{\Omega\times\Omega} \|x-y\|^{p} \,\mathrm{d}\gamma(x,y) \mid \Pi_{1\#}\gamma = \mu, \Pi_{2\#}\gamma = \rho\right\}.$$

• Optimal quantization: $\min_{Y=(y_1,...,y_N)\in\Omega^N} W_2^2(\rho,\mu)$: $\operatorname{spt}(\mu) \subset \{y_1,...,y_N\}$ Optimal uniform quantization: $\min_{Y=(y_1,...,y_N)\in\Omega^N} W_2^2(\rho,\frac{1}{N}\sum_i \delta_{y_i})$

 Let Ω ⊆ ℝ^d compact convex, and P(Ω) = probability measures on Ω. The Wasserstein distance W_p on P(Ω) is defined through optimal transport:

$$W_{\rho}^{p}(\mu,\rho) = \min\left\{\int_{\Omega\times\Omega} \|x-y\|^{p} \,\mathrm{d}\gamma(x,y) \mid \Pi_{1\#}\gamma = \mu, \Pi_{2\#}\gamma = \rho\right\}.$$

- Optimal quantization: $\min_{Y=(y_1,...,y_N)\in\Omega^N} W_2^2(\rho,\mu)$: $\operatorname{spt}(\mu) \subset \{y_1,...,y_N\}$ Optimal uniform quantization: $\min_{Y=(y_1,...,y_N)\in\Omega^N} W_2^2(\rho,\frac{1}{N}\sum_i \delta_{y_i})$
- Applications: Stippling of grayscale images [de Goes et al. 2012],

 $\begin{array}{ccc} \rho & y_1,\ldots,y_N\\ \text{Optimal location problems [Bourne, Schmitzer, Wirth, 2018], Generation of}\\ polycrystalline microstructures [Bourne$ *et al.* $2020], etc. \end{array}$

Semi-discrete optimal transport

Semi-discrete optimal transport

• The uniform quantization energy involves a semi-discrete OT problem:

$$F_N: Y = (y_1, \ldots, y_N) \in \Omega^N \mapsto \mathrm{W}_2^2 \left(\frac{1}{N} \sum_i \delta_{y_i}, \rho \right)$$

Semi-discrete optimal transport

• The uniform quantization energy involves a semi-discrete OT problem:

$$F_N: Y = (y_1, \ldots, y_N) \in \Omega^N \mapsto \mathrm{W}_2^2 \left(\frac{1}{N} \sum_i \delta_{y_i}, \rho \right)$$

• By Kantorovich duality, we have

$$W_2^2\left(\frac{1}{N}\sum_i \delta_{y_i}, \rho\right) = \max_{\Phi = (\phi_1, \dots, \phi_N)} \int \min_j (\|x - y_j\|^2 - \phi_j) \mathrm{d}\rho(x) + \sum_{1 \le i \le N} \frac{1}{N} \phi_i,$$

which can be re-written using the optimal $\Phi=\Phi_Y$ as

$$F_{N}(Y) = \sum_{1 \leq i \leq N} \int_{\operatorname{Lag}_{i}(Y, \Phi_{Y})} \|x - y_{i}\|^{2} d\rho(x)$$

where *Laguerre cells* are defined for $Y \in \Omega^N$ and $\Phi \in \mathbb{R}^N$:

$$\operatorname{Lag}_{i}(Y, \Phi) \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R}^{d} \mid \forall j, \|x - y_{i}\|^{2} - \phi_{i} \leq \|x - y_{j}\|^{2} - \phi_{j} \right\}$$

Indeed, given pairwise distinct points $Y \in \Omega^N$, the maximizer $\Phi_Y \in \mathbb{R}^N$ is unique and characterized by $\rho(\operatorname{Lag}_i(Y, \Phi_Y)) = \frac{1}{N}$: all cells have mass $\frac{1}{N}$.

Optimal quantization energy

- We minimize $F_N : Y \in \Omega^N \mapsto W_2^2 \left(\frac{1}{N} \sum_i \delta_{y_i}, \rho \right).$
- W_2^2 is convex on $\mathcal{P}(\Omega)$, yet F_N is **not convex** on Ω^N .

Optimal quantization energy

- We minimize $F_N : Y \in \Omega^N \mapsto W_2^2 \left(\frac{1}{N} \sum_i \delta_{y_i}, \rho\right)$.
- W_2^2 is convex on $\mathcal{P}(\Omega)$, yet F_N is **not convex** on Ω^N .

Proposition

 F_N is semi-concave on Ω^N , it is \mathcal{C}^1 on a dense open set and

$$F_N(Y) = \sum_i \int_{\operatorname{Lag}_i(Y,\Phi_Y)} \|x - y_i\|^2 d\rho(x),$$

Point cloud Y

 $\operatorname{Lag}_i(Y,\Phi_Y)$

Optimal quantization energy

- We minimize $F_N : Y \in \Omega^N \mapsto \mathrm{W}_2^2 \left(\frac{1}{N} \sum_i \delta_{y_i}, \rho \right).$
- W_2^2 is convex on $\mathcal{P}(\Omega)$, yet F_N is **not convex** on Ω^N .

Proposition

 F_N is semi-concave on Ω^N , it is \mathcal{C}^1 on a dense open set and

$$F_N(Y) = \sum_i \int_{\operatorname{Lag}_i(Y,\Phi_Y)} \|x - y_i\|^2 \, \mathrm{d}\rho(x), \quad \nabla_{y_i} F_N(Y) = \frac{2}{N}(y_i - b_i(Y))$$

where $b_i(Y) = N \int_{\text{Lag}_i(Y, \Phi_Y)} x d\rho(x)$ is the barycenter of the *i*th cell.

Point cloud Y

 $\operatorname{Lag}_i(Y,\Phi_Y)$

 $-\frac{N}{2}\nabla_{y_i}F_N(Y)$

Lloyd's algorithm

Optimal quant. of a density $ho\in\mathcal{P}(\Omega)$,

$$\min_{\mathbf{Y}} \underbrace{\min_{\alpha \in \Delta_N} \mathbf{W}_2^2 \left(\sum_i \alpha_i \delta_{\mathbf{y}_i}, \rho\right)}_{\mathcal{G}_N(\mathbf{Y})}$$

Algorithm: given $Y \in \Omega^N$ 1. Compute the **Voronoi cells** of Yand their **barycenters** b_i w.r.t. to ρ . 2. Set $y_i := b_i$ and repeat.

Lloyd's algorithm

Optimal quant. of a density $\rho \in \mathcal{P}(\Omega)$,

$$\min_{Y} \underbrace{\min_{\alpha \in \Delta_{N}} W_{2}^{2} \left(\sum_{i} \alpha_{i} \delta_{y_{i}}, \rho \right)}_{\mathcal{G}_{N}(Y)}$$

Algorithm: given $Y \in \Omega^N$ 1. Compute the **Voronoi cells** of Yand their **barycenters** b_i w.r.t. to ρ . 2. Set $y_i := b_i$ and repeat. Lloyd's "uniform" algorithm

Optimal uniform quantization of $\rho_{\rm r}$

$$\underset{Y}{\min} \underbrace{\mathbf{W}_{2}^{2}\left(\frac{1}{N}\sum_{i}\delta_{y_{i}},\rho\right)}_{F_{N}(Y)}$$

Algorithm: given $Y \in \Omega^N$

1. Compute the **Laguerre cells** $\text{Lag}_i(Y, \Phi_Y)$ solving the OT problem between ρ and $\mu = \frac{1}{N} \sum_i \delta_{y_i}$ and their **barycenters** $b_i(Y)$. 2. Set $y_i := b_i(Y)$ and repeat.

Lloyd's algorithm

Optimal quant. of a density $\rho \in \mathcal{P}(\Omega)$,

$$\min_{Y} \underbrace{\min_{\alpha \in \Delta_{N}} W_{2}^{2} \left(\sum_{i} \alpha_{i} \delta_{y_{i}}, \rho \right)}_{G_{N}(Y)}$$

Algorithm: given $Y \in \Omega^N$ 1. Compute the **Voronoi cells** of Yand their **barycenters** b_i w.r.t. to ρ . 2. Set $y_i := b_i$ and repeat. Lloyd's "uniform" algorithm

Optimal uniform quantization of ρ ,

$$\min_{Y} \underbrace{\mathbf{W}_{2}^{2}\left(\frac{1}{N}\sum_{i}\delta_{y_{i}},\rho\right)}_{F_{N}(Y)}$$

Algorithm: given $Y \in \Omega^N$

1. Compute the Laguerre cells $\operatorname{Lag}_i(Y, \Phi_Y)$ solving the OT problem between ρ and $\mu = \frac{1}{N} \sum_i \delta_{y_i}$ and their **barycenters** $b_i(Y)$. 2. Set $y_i := b_i(Y)$ and repeat.

• Lloyd's algorithms = fixed point algorithms for cancelling ∇G_N or ∇F_N .

Lloyd's algorithm

Optimal quant. of a density $\rho \in \mathcal{P}(\Omega)$,

Algorithm: given $Y \in \Omega^N$ 1. Compute the **Voronoi cells** of Yand their **barycenters** b_i w.r.t. to ρ . 2. Set $y_i := b_i$ and repeat. Lloyd's "uniform" algorithm

Optimal uniform quantization of ρ ,

$$\underset{Y}{\min} \underbrace{\mathbf{W}_{2}^{2}\left(\frac{1}{N}\sum_{i}\delta_{y_{i}},\rho\right)}_{F_{N}(Y)}$$

Algorithm: given $Y \in \Omega^N$

1. Compute the Laguerre cells $\operatorname{Lag}_i(Y, \Phi_Y)$ solving the OT problem between ρ and $\mu = \frac{1}{N} \sum_i \delta_{y_i}$ and their **barycenters** $b_i(Y)$. 2. Set $y_i := b_i(Y)$ and repeat.

- Lloyd's algorithms = fixed point algorithms for cancelling ∇G_N or ∇F_N .
- The iterates converge (up to subseq.) to a critical point of F_N or G_N .

Lloyd's algorithm

Optimal quant. of a density $\rho \in \mathcal{P}(\Omega)$,

Algorithm: given $Y \in \Omega^N$ 1. Compute the **Voronoi cells** of Yand their **barycenters** b_i w.r.t. to ρ . 2. Set $y_i := b_i$ and repeat. Lloyd's "uniform" algorithm

Optimal uniform quantization of ρ ,

$$\min_{\mathbf{Y}} \underbrace{\mathbf{W}_{2}^{2}\left(\frac{1}{N}\sum_{i}\delta_{y_{i}},\rho\right)}_{F_{N}(\mathbf{Y})}$$

Algorithm: given $Y \in \Omega^N$

1. Compute the Laguerre cells $\operatorname{Lag}_i(Y, \Phi_Y)$ solving the OT problem between ρ and $\mu = \frac{1}{N} \sum_i \delta_{y_i}$ and their **barycenters** $b_i(Y)$. 2. Set $y_i := b_i(Y)$ and repeat.

- Lloyd's algorithms = fixed point algorithms for cancelling ∇G_N or ∇F_N .
- The iterates converge (up to subseq.) to a critical point of F_N or G_N .
- In both cases, there may exist critical points with high energy

12 / 27

Low- and high-energy critical points of F_N

• The minimal value for the optimal quantization is always at most of order $N^{-2/d}$. For optimal uniform quantization the same estimate can depend on ρ , but, if ρ is bounded from above and below on a bounded convex set $\Omega \in \mathbb{R}^d$, then we have the same bound

$$\min_{\Omega^N} F_N \approx \left(\frac{1}{N}\right)^{2/d}.$$

Low- and high-energy critical points of F_N

• The minimal value for the optimal quantization is always at most of order $N^{-2/d}$. For optimal uniform quantization the same estimate can depend on ρ , but, if ρ is bounded from above and below on a bounded convex set $\Omega \in \mathbb{R}^d$, then we have the same bound

$$\min_{\Omega^N} F_N \approx \left(\frac{1}{N}\right)^{2/d}$$

• Minimizers for F_N are **critical**, i.e. they satisfy $y_i = b_i(Y)$ for every *i*.

Low- and high-energy critical points of F_N

• The minimal value for the optimal quantization is always at most of order $N^{-2/d}$. For optimal uniform quantization the same estimate can depend on ρ , but, if ρ is bounded from above and below on a bounded convex set $\Omega \in \mathbb{R}^d$, then we have the same bound

$$\min_{\Omega^N} F_N \approx \left(\frac{1}{N}\right)^{2/d}$$

- Minimizers for F_N are **critical**, i.e. they satisfy $y_i = b_i(Y)$ for every *i*.
- Due to the non-convexity of F_N , some critical points are NOT minimizers:

ρ

N = 20

Outline

- Optimal quantization
- 2 Optimal uniform quantization
- 3 Non-asymptotic bounds (from a NeurIPS paper with Q. Mérigot and C. Sarrazin)
- 4 Limit measures of critical points (from C. Sarrazin's PhD thesis)
- 5 Stable critical points of Lloyd's energy (from an ongoing work with A. Figalli and Q. Mérigot)

Convergence for well-chosen initial data

• Experimentally, Lloyd's algorithms converge well. Even better, when the point cloud $Y = (y_1, \ldots, y_N)$ is not chosen adversely, one observes

$$W_2^2\left(\frac{1}{N}\sum_i \delta_{b_i(Y)}, \rho\right) \ll 1.$$

 $B_N, N = 7280$

Convergence for well-chosen initial data

• Experimentally, Lloyd's algorithms converge well. Even better, when the point cloud $Y = (y_1, \ldots, y_N)$ is not chosen adversely, one observes

$$W_2^2\left(\frac{1}{N}\sum_i \delta_{b_i(Y)}, \rho\right) \ll 1.$$

 $B_N, N = 7280$

I.e., a single step Lloyd algorithm yields a good approximation of $\rho.$

Convergence for well-chosen initial data

• Experimentally, Lloyd's algorithms converge well. Even better, when the point cloud $Y = (y_1, \ldots, y_N)$ is not chosen adversely, one observes

$$W_2^2\left(\frac{1}{N}\sum_i \delta_{b_i(Y)}, \rho\right) \ll 1.$$

 $B_N, N = 7280$

I.e., a single step Lloyd algorithm yields a good approximation of $\rho.$

• Our main theorem explains this behaviour.

Theorem

Let $\Omega \subseteq \mathbb{R}^d$ be convex and let $\rho \in \mathcal{P}(\Omega)$. Consider a point cloud Y in Ω^N s.t.

$$\forall i \neq j, \quad \|y_i - y_j\| \geq \varepsilon$$

Then,

$$W_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(Y)},\rho\right) \leq \operatorname{cst}(d,\Omega) \cdot \frac{\varepsilon^{1-d}}{N}.$$

Theorem

Let $\Omega \subseteq \mathbb{R}^d$ be convex and let $\rho \in \mathcal{P}(\Omega)$. Consider a point cloud Y in Ω^N s.t.

$$\forall i \neq j, \quad \|y_i - y_j\| \geq \varepsilon$$

Then,

W

$$\frac{1}{2}\left(\frac{1}{N}\sum_{i=1}^{N}\delta_{b_i(\mathbf{Y})},\rho\right)\leq \operatorname{cst}(d,\Omega)\cdot\frac{\varepsilon^{1-d}}{N}.$$

• In particular, if $\varepsilon \approx N^{-1/\beta}$, then $W_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(Y)}, \rho\right) \leq CN^{\frac{d-1}{\beta}-1}$. This upper bound goes to zero as $N \to +\infty$ provided that $\beta > d - 1$.

Theorem

Let $\Omega \subseteq \mathbb{R}^d$ be convex and let $\rho \in \mathcal{P}(\Omega)$. Consider a point cloud Y in Ω^N s.t.

$$\forall i \neq j, \quad \|y_i - y_j\| \geq \varepsilon$$

Then,

$$W_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(Y)},\rho\right) \leq \operatorname{cst}(d,\Omega) \cdot \frac{\varepsilon^{1-d}}{N}.$$

• In particular, if $\varepsilon \approx N^{-1/\beta}$, then $W_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(Y)}, \rho\right) \leq CN^{\frac{d-1}{\beta}-1}$. This upper bound goes to zero as $N \to +\infty$ provided that $\beta > d-1$. This is **tight**: If $(y_i)_{1 \leq i \leq N}$ lie on the (d-1) hypercube $[0,1]^{d-1} \times \left\{\frac{1}{2}\right\}$ and if $\rho \equiv 1$ on $\Omega = [0,1]^d$:

$$\mathrm{W}_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(Y)},\rho\right) \geq \frac{1}{12}$$

Theorem

Let $\Omega \subseteq \mathbb{R}^d$ be convex and let $\rho \in \mathcal{P}(\Omega)$. Consider a point cloud Y in Ω^N s.t.

$$\forall i \neq j, \quad \|y_i - y_j\| \geq \varepsilon$$

Then,

$$W_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(Y)},\rho\right) \leq \operatorname{cst}(d,\Omega) \cdot \frac{\varepsilon^{1-d}}{N}.$$

- In particular, if $\varepsilon \approx N^{-1/\beta}$, then $W_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(Y)}, \rho\right) \leq CN^{\frac{d-1}{\beta}-1}$. This upper bound goes to zero as $N \to +\infty$ provided that $\beta > d-1$.
- When $\beta = d$, the upper bound of the theorem is

$$F_N(B_N) = \mathrm{W}_2^2\left(\frac{1}{N}\sum_i \delta_{y_i}, \rho\right) \lesssim \left(\frac{1}{N}\right)^{1/d}$$

Theorem

Let $\Omega \subseteq \mathbb{R}^d$ be convex and let $\rho \in \mathcal{P}(\Omega)$. Consider a point cloud Y in Ω^N s.t.

$$\forall i \neq j, \quad \|y_i - y_j\| \geq \varepsilon$$

Then,

$$N_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(\mathbf{Y})}, \rho\right) \leq \operatorname{cst}(d, \Omega) \cdot \frac{\varepsilon^{\mathbf{1}-d}}{N}.$$

- In particular, if $\varepsilon \approx N^{-1/\beta}$, then $W_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(Y)}, \rho\right) \leq CN^{\frac{d-1}{\beta}-1}$. This upper bound goes to zero as $N \to +\infty$ provided that $\beta > d-1$.
- When $\beta = d$, the upper bound of the theorem is

$$F_N(B_N) = \mathrm{W}_2^2\left(rac{1}{N}\sum_i \delta_{y_i},
ho
ight) \lesssim \left(rac{1}{N}
ight)^{1/d}$$

This does not match the upper bound on $\min_{\Omega^N} F_N$: $\min_{\Omega^N} F_N \lesssim \left(\frac{1}{N}\right)^{2/d}$.

Theorem

Let $\Omega \subseteq \mathbb{R}^d$ be convex and let $\rho \in \mathcal{P}(\Omega)$. Consider a point cloud Y in Ω^N s.t.

$$\forall i \neq j, \quad \|y_i - y_j\| \geq \varepsilon$$

Then,

$$W_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(Y)},\rho\right) \leq \operatorname{cst}(d,\Omega) \cdot \frac{\varepsilon^{1-d}}{N}.$$

- In particular, if $\varepsilon \approx N^{-1/\beta}$, then $W_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(Y)}, \rho\right) \leq CN^{\frac{d-1}{\beta}-1}$. This upper bound goes to zero as $N \to +\infty$ provided that $\beta > d-1$.
- When $\beta = d$, the upper bound of the theorem is

$$F_N(B_N) = \mathrm{W}_2^2\left(rac{1}{N}\sum_i \delta_{y_i},
ho
ight) \lesssim \left(rac{1}{N}
ight)^{1/d}$$

This does not match the upper bound on $\min_{\Omega^N} F_N$: $\min_{\Omega^N} F_N \lesssim \left(\frac{1}{N}\right)^{2/d}$. Yet, this is sharp taking d = 1, $\rho = \frac{1}{N}$ on [-1, 0] and $\rho = (1 - \frac{1}{N})$ on (0, 1] (or, in higher dimension, products of this distribution).

• Point are sampled from the Von Koch fractal (dimension $\beta = \frac{\ln 4}{\ln 3} \simeq 1.26$), $\rho \equiv 1$ on $\Omega = [0, 1]^2$.

N = 257

• Point are sampled from the Von Koch fractal (dimension $\beta = \frac{\ln 4}{\ln 3} \simeq 1.26$), $\rho \equiv 1$ on $\Omega = [0, 1]^2$.

N = 1025

• Point are sampled from the Von Koch fractal (dimension $\beta = \frac{\ln 4}{\ln 3} \simeq 1.26$), $\rho \equiv 1$ on $\Omega = [0, 1]^2$.

N = 4097

• Point are sampled from the Von Koch fractal (dimension $\beta = \frac{\ln 4}{\ln 3} \simeq 1.26$), $\rho \equiv 1$ on $\Omega = [0, 1]^2$.

N = 16385

We assume: $\forall i \neq j$, $||y_i - y_j|| \geq \varepsilon$

Main idea: There cannot be "too many" Laguerre cells that are "elongated"

We assume: $\forall i \neq j$, $||y_i - y_j|| \geq \varepsilon$

Main idea: There cannot be "too many" Laguerre cells that are "elongated"

• We use the concavity of the Laguerre cells w.r.t the weights Φ :

 $\frac{1}{2}\mathrm{Lag}_i(Y,0)\oplus \frac{1}{2}\mathrm{Lag}_i(Y,\Phi)\subset \mathrm{Lag}_i(Y,\Phi/2)$

We assume: $\forall i \neq j$, $||y_i - y_j|| \geq \varepsilon$

Main idea: There cannot be "too many" Laguerre cells that are "elongated"

• We use the concavity of the Laguerre cells w.r.t the weights Φ :

 $\frac{1}{2}\mathrm{Lag}_i(Y,0)\oplus \frac{1}{2}\mathrm{Lag}_i(Y,\Phi)\subset \mathrm{Lag}_i(Y,\Phi/2)$

 \implies if $\operatorname{Lag}_i(Y, \Phi)$ is "elongated", then $|\operatorname{Lag}_i(Y, \frac{1}{2}\Phi)|$ is "large":

We assume: $\forall i \neq j$, $||y_i - y_j|| \geq \varepsilon$

Main idea: There cannot be "too many" Laguerre cells that are "elongated"

• We use the concavity of the Laguerre cells w.r.t the weights Φ :

 $\frac{1}{2}\mathrm{Lag}_i(Y,0)\oplus \frac{1}{2}\mathrm{Lag}_i(Y,\Phi)\subset \mathrm{Lag}_i(Y,\Phi/2)$

 \implies if $\operatorname{Lag}_i(Y, \Phi)$ is "elongated", then $|\operatorname{Lag}_i(Y, \frac{1}{2}\Phi)|$ is "large":

We assume: $\forall i \neq j$, $||y_i - y_j|| \geq \varepsilon$

Main idea: There cannot be "too many" Laguerre cells that are "elongated"

• We use the concavity of the Laguerre cells w.r.t the weights Φ :

 $\frac{1}{2}\mathrm{Lag}_i(Y,0)\oplus \frac{1}{2}\mathrm{Lag}_i(Y,\Phi)\subset \mathrm{Lag}_i(Y,\Phi/2)$

 \implies if $\operatorname{Lag}_i(Y, \Phi)$ is "elongated", then $|\operatorname{Lag}_i(Y, \frac{1}{2}\Phi)|$ is "large":

Outline

Optimal quantization

- 2 Optimal uniform quantization
- 3 Non-asymptotic bounds (from a NeurIPS paper with Q. Mérigot and C. Sarrazin)

4 Limit measures of critical points (from C. Sarrazin's PhD thesis)

5 Stable critical points of Lloyd's energy (from an ongoing work with A. Figalli and Q. Mérigot)

Lagrangian critical measures

Let $Y = (y_1, \ldots, y_N)$ be a critical point for the optimal uniform quantization of a density ρ . Let $\mu_N := \frac{1}{N} \sum_{i=1}^N \delta_{y_i}$ be the associated empirical measure. What about the weak limits of μ_N , $N \to \infty$?

Definition (Lagrangian critical measures)

A measure μ is said to be Lagrangian critical if in the unique optimal transport plan γ (induced by a map T such that $T_{\#}\rho = \mu$) for the quadratic cost from ρ to μ we do have

$$\int \xi(y) \cdot (y-x) d\gamma(x,y) = 0$$

for all $\xi \in C(\Omega; \mathbb{R}^d)$. This corresponds to saying that μ -a.e. y is the barycenter of the conditional distribution γ_y on $T^{-1}(y)$.

The empirical measures μ_N are Lagrangian critical, and so is any weak limit μ .

Dimensional decomposition of Lagrangian critical measures

Let μ be a Lagrangian critical measure and define the sets $S_k = \{y \in \operatorname{spt}(\mu) : \dim(T^{-1}(y)) = d - k\}$. Then $\mu = \sum_{k=0}^d \mu^k$ where $\mu^k = \mu_{|S_k}$. We then have

- Every set S_k is contained in a countable union of $C^{1,1}$ k-dimensional hypersurfaces.
- For k = d, we have $\mu^k = \rho_{|S_d}$. In particular, if μ is absolutely continuous, then $\mu = \rho$.
- For k = 0, 1, d the measure μ^k is absolutely continuous w.r.t. the \mathcal{H}^k -Hausdorff measure. This is conjectured for all k, but not proven.
- In particular, if d = 2, μ fully decomposes into three layers, one per dimension.
- If moreover μ is a limit of empirical measures corresponding to discrete critical points Y_N , then $\mu^0 = 0$ (also proven for d = 1, 2 only but conjectured in the general case).

A Lagrangian critical measure with 1D and 2D parts

From left to right, the support of the probability density ρ (constant on this support), a critical point cloud for F_N which is not a minimizer and its limit measure. The limit measure μ is not uniform on the vertical segment (but it is uniform on the lower rectangle).

Outline

Optimal quantization

- 2 Optimal uniform quantization
- 3 Non-asymptotic bounds (from a NeurIPS paper with Q. Mérigot and C. Sarrazin)
- 4 Limit measures of critical points (from C. Sarrazin's PhD thesis)
- Stable critical points of Lloyd's energy (from an ongoing work with A. Figalli and Q. Mérigot)

Stable critical points

A critical point is *stable* if it is a local minimizer of F_N . In general, iteratvie algorithms converge to stable critical points.

Typical example of an *unstable* critical point:

Stable critical points in 2D

Proposition

For every dimension d there exists c > 0 such that if

$$\mathcal{H}^{d-1}(\operatorname{Lag}_{i}(Y,\Phi_{Y})\cap\operatorname{Lag}_{j}(Y,\Phi_{Y}))\geq cN^{-rac{d-1}{d}}$$

for some $i \neq j$, then the configuration is unstable.

Elaborating on this, but only for d = 2 one can prove (work in progress)

Theorem

In dimension d = 2, $\exists c > 0$ s.t. for any a stable critical point $Y \in \mathbb{R}^{dN}$, we have diam $(\operatorname{Lag}_i(Y, \Phi_Y)) \leq cN^{-1/d}$. In particular

$$W_2\left(\frac{1}{N}\sum_i \delta_{y_i}, \rho\right) \le c\left(\frac{1}{N}\right)^{1/d}$$

• $\Omega = [-\pi, \pi]^2, \rho \equiv 1/(4\pi^2), N = 10^2, Y^0 =$ uniform grid.

• Iterates follow Lloyd's algorithm: $Y^{k+1} = (b_1(Y^k), \dots, b_N(Y^k)).$

k=1

• $\Omega = [-\pi, \pi]^2, \rho \equiv 1/(4\pi^2), N = 10^2, Y^0 =$ uniform grid.

• Iterates follow Lloyd's algorithm: $Y^{k+1} = (b_1(Y^k), \dots, b_N(Y^k)).$

k=101

• $\Omega = [-\pi, \pi]^2, \rho \equiv 1/(4\pi^2), N = 10^2, Y^0 =$ uniform grid.

• Iterates follow Lloyd's algorithm: $Y^{k+1} = (b_1(Y^k), \dots, b_N(Y^k)).$

k=121

• $\Omega = [-\pi, \pi]^2, \rho \equiv 1/(4\pi^2), N = 10^2, Y^0 =$ uniform grid.

• Iterates follow Lloyd's algorithm: $Y^{k+1} = (b_1(Y^k), \dots, b_N(Y^k)).$

k=141

• $\Omega = [-\pi, \pi]^2, \rho \equiv 1/(4\pi^2), N = 10^2, Y^0 =$ uniform grid.

• Iterates follow Lloyd's algorithm: $Y^{k+1} = (b_1(Y^k), \dots, b_N(Y^k)).$

k=161

• Lloyd's iterate escape the critical point due to numerical error + instability.

Summary and Perspectives

Take-home message: Despite the non-convexity, gradient descent strategies for optimal uniform quantization problem, i.e.

$$\min_{\boldsymbol{Y}\in\Omega^{N}} \mathbf{W}_{2}^{2}\left(\frac{1}{N}\sum_{i}\delta_{y_{i}},\rho\right)$$

often lead to low energy configurations. This is related to several points raised in this presentation

- when the points are far enough from each other the corresponding barycenters provide good values for the quantization energy
- \bullet when the limit configuration is not too much concentrated the limit measure coincides with ρ
- iterations generically converge to stable critical points, which have good values for the energy

Summary and Perspectives

Take-home message: Despite the non-convexity, gradient descent strategies for optimal uniform quantization problem, i.e.

$$\min_{\boldsymbol{Y}\in\Omega^{N}} \mathbf{W}_{2}^{2}\left(\frac{1}{N}\sum_{i}\delta_{y_{i}},\rho\right)$$

often lead to low energy configurations. This is related to several points raised in this presentation

- when the points are far enough from each other the corresponding barycenters provide good values for the quantization energy
- \bullet when the limit configuration is not too much concentrated the limit measure coincides with ρ
- iterations generically converge to stable critical points, which have good values for the energy

(Some) open questions:

- Can estimates be improved if ρ is bounded from above and below?
- Can estimates be improved when ρ is supported on a submanifold of \mathbb{R}^d ?
- What can we say about the limits of discrete critical points in dim. d > 2?
- What about *stable* critical points in dimension d > 2?
- Are non-optimal grids with reasonable energy unstable?

Thank you for your attention!