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Euclid’s algorithm
We start with two nonnegative integers u0 and u1

u0 = u1

[
u0

u1

]
+ u2

u1 = u2

[
u1

u2

]
+ u3

...

um−1 = um

[
um−1

um

]
+ um+1

um+1 = gcd(u0, u1)

um+2 = 0

One subtracts the smallest number from the largest as much as we can

The oldest nontrivial algorithm that has survived to the present day
[Knuth]



Analysis of algorithms-Knuth

The advent of high-speed computing machines, which are capable
of carrying out algorithms so faithfully, has led to intensive studies

of the properties of algorithms, opening up a fertile field for
mathematical investigations. Every reasonable algorithm suggests
interesting questions of a ‘pure mathematical’ nature; and the

answers to these questions sometimes lead to useful applications,
thereby adding a little vigor to the subject without spoiling its

beauty. [Knuth]

[Origins of the Analysis of the Euclidean Algorithm-Shallit]



Analysis of Euclid’s algorithm

What is the expected number of steps?
What is the worst/mean behaviour ?

Dynamical systems and Perron-Frobenius machinery
Euclid’s algorithm becomes in its continuous version the Gauss
transformation

T : [0, 1]→ [0, 1], x 7→ {1/x}

Rational trajectories behave like generic trajectories for the
Gauss transformation
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Analysis of algorithms
• Analysis of algorithms [Knuth’63]

probabilistic, combinatorial, and analytic methods

• Analytic combinatorics [Flajolet-Sedgewick]

generating functions and complex analysis,
analysis of the singularities

• Dynamical analysis of algorithms [Vallée]

Transfer operators ; Generating functions of Dirichlet type



Euclid algorithm and continued fractions

We start with two coprime integers u0 and u1

u0 = u1a1 + u2

...

um−1 = umam + um+1

um = um+1am+1 + 0

um+1 = 1 = gcd(u0, u1)

u1

u0
=

1
a1 + u2

u1

u1/u0 =
1

a1 +
1

a2 +
1

. . . + 1
am+

1
am+1
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Matricial description

We start with two positive real numbers (x0, x1) with x0 > x1
We divide the largest entry by the smallest and we continue

x0 = bx0/x1cx1 + x2 a1 := bx0/x1c

(
x0
x1

)
=

(
a1 1
1 0

)(
x1
x2

)
=

(
a1 1
1 0

)
· · ·
(

an 1
1 0

)(
xn
xn+1

)



Matricial description
We start with two positive real numbers (x0, x1) with x0 > x1
We divide the largest entry by the smallest and we continue

x0 = bx0/x1cx1 + x2 a1 := bx0/x1c(
x0
x1

)
=

(
a1 1
1 0

)(
x1
x2

)
=

(
a1 1
1 0

)
· · ·
(

an 1
1 0

)(
xn
xn+1

)

Let α := x1/x0. One has α ∈ [0, 1].

Let T (α) = 1/α− [1/α].

(
1
α

)
= α

(
[1/α] 1
1 0

)(
1
T (α)

)

(
1
α

)
= α · · ·T n−1(α)

(
a1 1
1 0

)
· · ·
(

an 1
1 0

)(
1
T n(α)

)

Number of steps ; size of a product of matrices ; first Lyapunov exponent



Matricial description

We start with two positive real numbers (x0, x1) with x0 > x1
We divide the largest entry by the smallest and we continue

x0 = bx0/x1cx1 + x2 a1 := bx0/x1c

(
x0
x1

)
=

(
a1 1
1 0

)(
x1
x2

)
=

(
a1 1
1 0

)
· · ·
(

an 1
1 0

)(
xn
xn+1

)
We normalize α := x1/x0 and we set

Mn :=

(
an 1
1 0

)
;

(
1
α

)
∈
⋂
n

M1 · · ·MnR2
+

M1 · · ·Mn =

(
qn qn−1
pn pn−1

)
; a sequence of lattice bases for Z2



Number of steps `(u, v)

`(u, v): number of steps in Euclid algorithm 0 < v < u

Worst case

`(u, v) = O(log v) (≤ 5 log10 v , Lamé 1844)

Mean case 0 < v < u ≤ N gcd(u, v) = 1

EN [`] =
12 log 2
π2 · logN + η + O(N−γ)

Asymptotically normal distribution

[Knuth,Heilbronn’69,Dixon’70,Porter’75,Hensley’94,Baladi-Vallée’05...]



Continued fractions and dynamical systems

Consider the Gauss map

T : [0, 1]→ [0, 1], x 7→ {1/x}

x1 = T (x) = {1/x} =
1
x
−
[
1
x

]
=

1
x
− a1

x =
1

a1 + x1
an =

[
1

T n−1x

]

x =
1

a1 +
1

a2 +
1

a3 + · · ·



Continued fractions and dynamical systems
Consider the Gauss map

T : [0, 1]→ [0, 1], x 7→ {1/x}

2. SUMMARY OF CLASSICAL RESULTS 

The Gauss Map. We begin with the classical method for finding the continued 

fraction representation of a number y. We put no equal to the integer part of y, 

by which we mean the greatest integer less than or equal to y. If the fractional part 

of y is not zero, we put yo equal to the fractional part of y. We then invert yo, 

and put n, equal to the integer part of l /yo .  Similarly we put y, equal to the 

fractional part, and repeat. Note that no may be positive, negative, or zero, but 

that all the subsequent n, will be positive, and that each y, is in the interval [O, 1). 

This process gives us unique continued fraction for each starting point y, and the 

process terminates if and only if y is rational. (For any rational y there is one 

other simple continued fraction which is only trivially different from the one 

generated by this algorithm.) This algorithm is related to the Euclidean algorithm 

for finding the greatest common divisor (gcd) of two integers k and m (Olds 

[1963]), in that if we use this method to find the continued fraction of k/m, then 

the integer parts that arise are precisely the quotients that arise in the Euclidean 

algorithm, and in fact the last nonzero remainder from the Euclidean algorithm 

appears as the numerator of the last nonzero fractional part. This remainder is of 

course the gcd of k and m. Further, this algorithm can easily be seen to terminate 

in O(log(min(k, m)))operations. Classically, most attention has been paid to the 

integers generated by this algorithm, which make up the continued fraction itself. 

However, Gauss was apparently the first to study the other part of this algorithm, 

which we present as the following map, called the Gauss map (Mafi6 [I98711 (see 

FIGURE 1): 

i f x = O  

mod 1 otherwise 

Figure 1. The graph o f  the Gauss Map G(x).  Note that there are an infinite number o f  jump 

discontinuities at values o f  x = l / n ,  for integers n .  In addition, there is a pole at the origin. The 

darkening o f  the curve towards the origin is suggestive o f  the fractional nature o f  the capacity 

dimension. 

We use the notation "mod 1" to mean taking the fractional part. In terms of the 

Gauss map G, our algorithm then becomes 

y,,, = fractional part of l /y ,  = G ( y k )  

n,,, = integerpartof l /y , ,  f o r k  = 0 , 1 , 2 , 3  , . . .  

and we see that the continued fraction is generated as a byproduct of the iteration 

of the Gauss map. Thus we expect that any classical results on continued fractions 

will have implications for the dynamics of the Gauss map. 

204 R. M. CORLESS [March 

T (x) = {1/x} =
1
x
−
[
1
x

]
=

1
x
− a1

1
k + 1

< x ≤ 1
k

; a1 = k



Continued fractions and dynamical systems

Consider the Gauss map

T : [0, 1]→ [0, 1], x 7→ {1/x}

For a.e. x ∈ [0, 1]

lim
log qn
n

=
π2

12 log 2

For a.e. x and for a ≥ 1

lim
N→∞

1
N
{k ≤ N; ak = a} =

1
log 2

log
(a + 1)2

a(a + 2)



On the iterates of Perron–Frobenius’ operator

Think of f as a density function

Lf (x) =
∑

y :T (y)=x

1
|T ′(y)|

f (y) =
∑
a≥1

(
1

a + x

)2

f

(
1

a + x

)



On the iterates of Perron–Frobenius’ operator

Think of f as a density function

Lf (x) =
∑

y :T (y)=x

1
|T ′(y)|

f (y) =
∑
a≥1

(
1

a + x

)2

f

(
1

a + x

)

Let x = [0; a1, a2, · · · ].

Lk f (x) =
∑

a1,··· ,ak

1
(qk−1x + qk)2 f

(
pk−1x + pk
qk−1x + qk

)
Perron–Frobenius On a suitable functional space, there exists ρ < 1
such that

Lk f (x) =
1

log 2
1

1 + x

∫ 1

0
f (x)dx + O(ρk ||f ||)



On the iterates of Perron–Frobenius’ operator
Think of f as a density function

Lf (x) =
∑

y :T (y)=x

1
|T ′(y)|

f (y) =
∑
a≥1

(
1

a + x

)2

f

(
1

a + x

)

Ruelle operator

Ls f (x) =
∑
h∈H

h′(x)s · f ◦ h(x) s ∈ C

Involving additive costs

Ls,w f (x) =
∑
h∈H

h′(x)s · ewc(h) · f ◦ h(x)

The parameter w will be used for the study of probabilistic limit
theorems and the parameter s plays a role in the study of Hausdorff
dimensions.



Continued fractions

We consider a positive real number α.

One looks for sequences of rational numbers (pn/qn)n
that satisfies

lim pn/qn = α

Continued fractions allow to do it with exponential speed

|α− pn/qn| ≤
1
q2
n



Multidimensional continued fractions

If we start with two parameters (α, β), one looks for two sequences
of rational numbers (pn/qn) and (rn/qn) with the same
denominator that satisfy

lim pn/qn = α lim rn/qn = β

Expected speed 3/2

|α− pn/qn| ≤ 1/q3/2
n |β − rn/qn| ≤ 1/q3/2

n



Dirichlet’s bound and exponential convergence

Dirichlet’s theorem We are given a d-dimensional real vector
α = (α1, · · · , αd) ∈ [0, 1]d . For any positive integer N, there exist
integers p1, . . . , pd , q with

1 ≤ q ≤ N

such that
|pi − qαi | <

1
N1/d i = 1, 2, · · · , d



Dirichlet’s bound and exponential convergence

Dirichlet’s theorem We are given a d-dimensional real vector
α = (α1, · · · , αd) ∈ [0, 1]d . For any positive integer N, there exist
integers p1, . . . , pd , q with

1 ≤ q ≤ N

such that

|pi − qαi | <
1

N1/d ≤
1

q1/d i = 1, 2, · · · , d

Dirichlet’s bound 1 + 1/d∣∣∣∣piq − αi

∣∣∣∣ ≤ 1

q1+ 1
d



Jacobi-Perron algorithm (1868-1907)

Consider the Jacobi-Perron algorithm. Its projective version is
defined on the unit square [0, 1]2 by

(x , y) 7→
(
y

x
−
⌊y
x

⌋
,
1
x
−
⌊
1
x

⌋)
=

({y
x

}
,

{
1
x

})
.

With x = b/a, y = c/a, its linear version is defined on the positive
cone {(a, b, c) ∈ R3|0 < b, c < a} by

(a, b, c) 7→ (a1, b1, c1) = (b, c − bc/bcb, a− ba/bcb).

Set C = bc/bc, A = ba/bc. One has a
b
c

 =

 A 0 1
1 0 0
C 1 0

 a1
b1
c1

 =

 A 0 1
1 0 0
C 1 0

 b
c − Cb
a− Ab

 .



Theorem of Perron–Frobenius type

One considers an infinite product of matrices

E1 · · ·Ek · · ·

with entries in N. One assumes that there exists a matrix B with
strictly positive entries s.t. there exist i1 < j1 < · · · < ik < jk s.t.

B = Ei1 · · ·Ej1 , · · · ,B = Eik · · ·Ejk , · · · .

Then, the intersection of the cones

∩k E1 · · ·Ek(Rn
+)

is unidimensional [Furstenberg]

; Convergence



Convergence for simultaneous approximations

M1 · · ·Mn =


q
(n)
1 · · · q

(n)
d+1

p
(n)
1,1 · · · p

(n)
1,d+1

· · ·
p
(n)
d ,1 · · · p

(n)
d ,d+1

;

p
(n)
1,j

q
(n)
j

, · · · ,
p
(n)
d ,j

q
(n)
j



Weak convergence Convergence in angle

lim
n→+∞

p
(n)
1,j

q
(n)
j

, · · · ,
p
(n)
d ,j

q
(n)
j

 = (α1, · · · , αd)

Strong convergence Convergence in distance

lim
n→+∞

|q(n)j αi − p
(n)
i ,j | = 0 for all i , j



Convergence of Jacobi-Perron algorithm

Theorem [Broise-Guivarc’h’99] There exists δ > 0 s.t. for almost
every (α, β)

|α− pn/qn| <
1

q1+δ
n

, |β − rn/qn| <
1

q1+δ
n

where pn, qn, rn are produced by either by Jacobi-Perron algorithm

What is the dependence of δ with respect to the number of
parameters?



Lyapunov exponents

We consider a MCF algorithm given by a piecewise constant
transformation

A : [0, 1]d → GL(d + 1,Z)

with its associated transformation ([0, 1]d ,TA, ν). We assume ν
ergodic. Let

A(n)(u) = A(u)A(TAu) · · ·A(T n−1
A u).

We assume log+ ||A(x)|| is ν-integrable (log+(a) = max{log a, 0}
for a > 0).

Then by the Oseledets Theorem the following Lyapunov exponents
λk , 1 ≤ k ≤ d+1, exist

λ1 + · · ·+ λk = lim
n→∞

1
n

log ‖ ∧k A(n)(u)‖ for ν-a.e. u ∈ ∆.



Lyapunov exponents

An(x) =

(
qn qn−1
pn pn−1

)
Theorem For a.e. x ,

lim
1
n

log qn =
π2

12 log 2
= 1.18 · · · = λ1

λ1 is the first Lyapunov exponent

First Lyapunov exponent = “log largest eigenvalue” ; size of the
matrices/convergents An(x) ∼ qn(x) ∼ eλ1n

Number of steps in Euclid’s algorithm = size/ log eigenvalue

logN/λ1

Second Lyapunov exponent = "log of the second eigenvalue" ;
measures the distance between column vectors



Lyapunov exponents

First Lyapunov exponent = log largest eigenvalue; size of the
matrices/convergents M(n)(α) ∼ qni (α) ∼ eλ1n

Second Lyapunov exponent = "log of the second eigenvalue" ;
measures the distance between column vectors

M(n)(α) =


q
(n)
1 · · · q

(n)
d+1

p
(n)
1,1 · · · p

(n)
1,d+1

· · ·
p
(n)
d,1 · · · p

(n)
d,d+1





Lyapunov exponents
First Lyapunov exponent = log largest eigenvalue; size of the
matrices/convergents M(n)(α) ∼ qni (α) ∼ eλ1n

Second Lyapunov exponent = "log of the second eigenvalue" ;
measures the distance between column vectors

M(n)(α) =


q
(n)
1 · · · q

(n)
d+1

p
(n)
1,1 · · · p

(n)
1,d+1

· · ·
p
(n)
d,1 · · · p

(n)
d,d+1



λ1 ↔ log ‖M(n)‖

λ1 + λ2 ↔ log ‖ ∧2 M(n)‖ ↔ log ‖c(n)i ∧ c
(n)
j ‖

λ2 distance between column vectors

Dirichlet’s bound 1 + 1/d vs. 1− λ2/λ1



Higher-dimensional case
Numerical experiments indicate that classical multidimensional
continued fraction algorithms seem to cease to be strongly
convergent for high dimensions. The only exception seems to be
the Arnoux-Rauzy algorithm which, however, is defined only on a
set of measure zero [B.-Steiner-Thuswaldner]

d λ2(AJ) 1− λ2(AJ)
λ1(AJ)

d λ2(AJ) 1− λ2(AJ)
λ1(AJ)

2 −0.44841 1.3735 7 −0.02819 1.0243
3 −0.22788 1.1922 8 −0.01470 1.0127
4 −0.13062 1.1114 9 −0.00505 1.0044
5 −0.07880 1.0676 10 +0.00217 0.9981
6 −0.04798 1.0413 11 +0.00776 0.9933

Table: Heuristically estimated values for the second Lyapunov exponent
and the uniform approximation exponent of the Jacobi–Perron Algorithm
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Let GL(n,Z) stand for the set of matrices with integer entries and
determinant ±1.

Theorem [Duke-Rudnick-Sarnak] One has

{M ∈ GL(n,Z), |mij | ≤ T} ∼ cnT
n2−n

How to generate “random matrices” in GLn(Z)?



How does LLL produce good approximations?

Let

Mt :=


1 0 · · · 0 −α1

0 1 · · · 0 −α2

· · · · · · · · · · · · · · ·
0 0 · · · 1 −αd

0 · · · · · · 0 t
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Let

Mt :=


1 0 · · · 0 −α1

0 1 · · · 0 −α2

· · · · · · · · · · · · · · ·
0 0 · · · 1 −αd

0 · · · · · · 0 t


LLL produces in polynomial time a vector b1 such that

||b1|| ≤ 2d/4det(Mt)
1/d+1 = 2d/4t1/d+1

One has

b1 = (p1 − qα1)e1 + · · ·+ (pd − qαded) + qted+1

∀i , |pi − αiq| ≤ 2d/4t1/d+1 and qt ≤ 2d/4t1/d+1

; ∀i , |pi − αiq| ≤ 2(d+1)/41/q1/d
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