Euclidean algorithms and dynamical systems

V. Berthé
IRIF-CNRS-Université Paris Cité

10ème anniversaire du Labex Bézout

Euclid's algorithm

We start with two nonnegative integers u_{0} and u_{1}

$$
\begin{gathered}
u_{0}=u_{1}\left[\frac{u_{0}}{u_{1}}\right]+u_{2} \\
u_{1}=u_{2}\left[\frac{u_{1}}{u_{2}}\right]+u_{3} \\
\vdots \\
u_{m-1}=u_{m}\left[\frac{u_{m-1}}{u_{m}}\right]+u_{m+1} \\
u_{m+1}=\operatorname{gcd}\left(u_{0}, u_{1}\right) \\
u_{m+2}=0
\end{gathered}
$$

One subtracts the smallest number from the largest as much as we can
The oldest nontrivial algorithm that has survived to the present day

Analysis of algorithms-Knuth

The advent of high-speed computing machines, which are capable of carrying out algorithms so faithfully, has led to intensive studies of the properties of algorithms, opening up a fertile field for mathematical investigations. Every reasonable algorithm suggests interesting questions of a 'pure mathematical' nature; and the answers to these questions sometimes lead to useful applications, thereby adding a little vigor to the subject without spoiling its beauty. [Knuth]
[Origins of the Analysis of the Euclidean Algorithm-Shallit]

Analysis of Euclid's algorithm

- What is the expected number of steps?
- What is the worst/mean behaviour ?

Analysis of Euclid's algorithm

- What is the expected number of steps?
- What is the worst/mean behaviour ?
- Dynamical systems and Perron-Frobenius machinery
- Euclid's algorithm becomes in its continuous version the Gauss transformation

$$
T:[0,1] \rightarrow[0,1], x \mapsto\{1 / x\}
$$

- Rational trajectories behave like generic trajectories for the Gauss transformation

Analysis of algorithms

- Analysis of algorithms [Knuth'63] probabilistic, combinatorial, and analytic methods
- Analytic combinatorics [Flajolet-Sedgewick]

generating functions and complex analysis, analysis of the singularities

- Dynamical analysis of algorithms [Vallée]

Transfer operators \leadsto Generating functions of Dirichlet type

Euclid algorithm and continued fractions

We start with two coprime integers u_{0} and u_{1}

$$
u_{0}=u_{1} a_{1}+u_{2}
$$

$$
\begin{gathered}
u_{m-1}=u_{m} a_{m}+u_{m+1} \\
u_{m}=u_{m+1} a_{m+1}+0 \\
u_{m+1}=1=\operatorname{gcd}\left(u_{0}, u_{1}\right)
\end{gathered}
$$

Euclid algorithm and continued fractions

We start with two coprime integers u_{0} and u_{1}

$$
\begin{gathered}
u_{0}=u_{1} a_{1}+u_{2} \\
\vdots \\
u_{m-1}=u_{m} a_{m}+u_{m+1} \\
u_{m}=u_{m+1} a_{m+1}+0 \\
u_{m+1}=1=\operatorname{gcd}\left(u_{0}, u_{1}\right) \\
\frac{u_{1}}{u_{0}}=\frac{1}{a_{1}+\frac{u_{2}}{u_{1}}}
\end{gathered} u_{1} / u_{0}=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}+\frac{1}{a_{m}+\frac{1}{a_{m+1}}}}}
$$

Matricial description

We start with two positive real numbers $\left(x_{0}, x_{1}\right)$ with $x_{0}>x_{1}$ We divide the largest entry by the smallest and we continue

$$
\begin{gathered}
x_{0}=\left\lfloor x_{0} / x_{1}\right\rfloor x_{1}+x_{2} \quad a_{1}:=\left\lfloor x_{0} / x_{1}\right\rfloor \\
\binom{x_{0}}{x_{1}}=\left(\begin{array}{ll}
a_{1} & 1 \\
1 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right)\binom{x_{n}}{x_{n+1}}
\end{gathered}
$$

Matricial description

We start with two positive real numbers $\left(x_{0}, x_{1}\right)$ with $x_{0}>x_{1}$ We divide the largest entry by the smallest and we continue

$$
\begin{gathered}
x_{0}=\left\lfloor x_{0} / x_{1}\right\rfloor x_{1}+x_{2} \\
a_{1}:=\left\lfloor x_{0} / x_{1}\right\rfloor \\
\binom{x_{0}}{x_{1}}=\left(\begin{array}{ll}
a_{1} & 1 \\
1 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right)\binom{x_{n}}{x_{n+1}}
\end{gathered}
$$

- Let $\alpha:=x_{1} / x_{0}$. One has $\alpha \in[0,1]$.
- Let $T(\alpha)=1 / \alpha-[1 / \alpha]$.

$$
\begin{gathered}
\binom{1}{\alpha}=\alpha\left(\begin{array}{ll}
{[1 / \alpha]} & 1 \\
1 & 0
\end{array}\right)\binom{1}{T(\alpha)} \\
\binom{1}{\alpha}=\alpha \cdots T^{n-1}(\alpha)\left(\begin{array}{ll}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{ll}
a_{n} & 1 \\
1 & 0
\end{array}\right)\binom{1}{T^{n}(\alpha)}
\end{gathered}
$$

Matricial description

We start with two positive real numbers $\left(x_{0}, x_{1}\right)$ with $x_{0}>x_{1}$ We divide the largest entry by the smallest and we continue

$$
\begin{gathered}
x_{0}=\left\lfloor x_{0} / x_{1}\right\rfloor x_{1}+x_{2} \quad a_{1}:=\left\lfloor x_{0} / x_{1}\right\rfloor \\
\binom{x_{0}}{x_{1}}=\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right)\binom{x_{n}}{x_{n+1}}
\end{gathered}
$$

We normalize $\alpha:=x_{1} / x_{0}$ and we set

$$
\begin{gathered}
M_{n}:=\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right) \leadsto\binom{1}{\alpha} \in \bigcap_{n} M_{1} \cdots M_{n} \mathbb{R}_{+}^{2} \\
M_{1} \cdots M_{n}=\left(\begin{array}{cc}
q_{n} & q_{n-1} \\
p_{n} & p_{n-1}
\end{array}\right) \leadsto \text { a sequence of lattice bases for } \mathbb{Z}^{2}
\end{gathered}
$$

Number of steps $\ell(u, v)$
$\ell(u, v)$: number of steps in Euclid algorithm $0<v<u$

- Worst case

$$
\ell(u, v)=O(\log v) \quad\left(\leq 5 \log _{10} v,\right. \text { Lamé 1844) }
$$

- Mean case

$$
0<v<u \leq N \quad \operatorname{gcd}(u, v)=1
$$

$$
\mathbb{E}_{N}[\ell]=\frac{12 \log 2}{\pi^{2}} \cdot \log N+\eta+O\left(N^{-\gamma}\right)
$$

Asymptotically normal distribution

Continued fractions and dynamical systems

Consider the Gauss map

$$
\begin{gathered}
T:[0,1] \rightarrow[0,1], x \mapsto\{1 / x\} \\
x_{1}=T(x)=\{1 / x\}=\frac{1}{x}-\left[\frac{1}{x}\right]=\frac{1}{x}-a_{1} \\
x=\frac{1}{a_{1}+x_{1}} \quad a_{n}=\left[\frac{1}{T^{n-1} x}\right] \\
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}}
\end{gathered}
$$

Continued fractions and dynamical systems

Consider the Gauss map

$$
\begin{gathered}
T:[0,1] \rightarrow[0,1], x \mapsto\{1 / x\} \\
1+2
\end{gathered}
$$

Continued fractions and dynamical systems

Consider the Gauss map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\{1 / x\}
$$

- For a.e. $x \in[0,1]$

$$
\lim \frac{\log q_{n}}{n}=\frac{\pi^{2}}{12 \log 2}
$$

- For a.e. x and for $a \geq 1$

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left\{k \leq N ; \quad a_{k}=a\right\}=\frac{1}{\log 2} \log \frac{(a+1)^{2}}{a(a+2)}
$$

On the iterates of Perron-Frobenius' operator

Think of f as a density function

$$
\mathcal{L} f(x)=\sum_{y: T(y)=x} \frac{1}{\left|T^{\prime}(y)\right|} f(y)=\sum_{a \geq 1}\left(\frac{1}{a+x}\right)^{2} f\left(\frac{1}{a+x}\right)
$$

On the iterates of Perron-Frobenius' operator

Think of f as a density function

$$
\mathcal{L} f(x)=\sum_{y: T(y)=x} \frac{1}{\left|T^{\prime}(y)\right|} f(y)=\sum_{a \geq 1}\left(\frac{1}{a+x}\right)^{2} f\left(\frac{1}{a+x}\right)
$$

Let $x=\left[0 ; a_{1}, a_{2}, \cdots\right]$.

$$
\mathcal{L}^{k} f(x)=\sum_{a_{1}, \cdots, a_{k}} \frac{1}{\left(q_{k-1} x+q_{k}\right)^{2}} f\left(\frac{p_{k-1} x+p_{k}}{q_{k-1} x+q_{k}}\right)
$$

Perron-Frobenius On a suitable functional space, there exists $\rho<1$ such that

$$
\mathcal{L}^{k} f(x)=\frac{1}{\log 2} \frac{1}{1+x} \int_{0}^{1} f(x) d x+O\left(\rho^{k}\|f\|\right)
$$

On the iterates of Perron-Frobenius' operator

Think of f as a density function

$$
\mathcal{L} f(x)=\sum_{y: T(y)=x} \frac{1}{\left|T^{\prime}(y)\right|} f(y)=\sum_{a \geq 1}\left(\frac{1}{a+x}\right)^{2} f\left(\frac{1}{a+x}\right)
$$

Ruelle operator

$$
\mathcal{L}_{s} f(x)=\sum_{h \in \mathcal{H}} h^{\prime}(x)^{s} \cdot f \circ h(x) \quad s \in \mathbb{C}
$$

Involving additive costs

$$
\mathcal{L}_{s, w} f(x)=\sum_{h \in \mathcal{H}} h^{\prime}(x)^{s} \cdot e^{w c(h)} \cdot f \circ h(x)
$$

The parameter w will be used for the study of probabilistic limit theorems and the parameter s plays a role in the study of Hausdorff dimensions.

Continued fractions

We consider a positive real number α.
One looks for sequences of rational numbers $\left(p_{n} / q_{n}\right)_{n}$ that satisfies

$$
\lim p_{n} / q_{n}=\alpha
$$

Continued fractions allow to do it with exponential speed

$$
\left|\alpha-p_{n} / q_{n}\right| \leq \frac{1}{q_{n}^{2}}
$$

Multidimensional continued fractions

If we start with two parameters (α, β), one looks for two sequences of rational numbers $\left(p_{n} / q_{n}\right)$ and $\left(r_{n} / q_{n}\right)$ with the same denominator that satisfy

$$
\lim p_{n} / q_{n}=\alpha \quad \lim r_{n} / q_{n}=\beta
$$

Expected speed 3/2

$$
\left|\alpha-p_{n} / q_{n}\right| \leq 1 / q_{n}^{3 / 2} \quad\left|\beta-r_{n} / q_{n}\right| \leq 1 / q_{n}^{3 / 2}
$$

Dirichlet's bound and exponential convergence

Dirichlet's theorem We are given a d-dimensional real vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \cdots, \alpha_{d}\right) \in[0,1]^{d}$. For any positive integer N, there exist integers p_{1}, \ldots, p_{d}, q with

$$
1 \leq q \leq N
$$

such that

$$
\left|p_{i}-q \alpha_{i}\right|<\frac{1}{N^{1 / d}} \quad i=1,2, \cdots, d
$$

Dirichlet's bound and exponential convergence

Dirichlet's theorem We are given a d-dimensional real vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \cdots, \alpha_{\boldsymbol{d}}\right) \in[0,1]^{d}$. For any positive integer N, there exist integers p_{1}, \ldots, p_{d}, q with

$$
1 \leq q \leq N
$$

such that

$$
\begin{gathered}
\left|p_{i}-q \alpha_{i}\right|<\frac{1}{N^{1 / d}} \leq \frac{1}{q^{1 / d}} \quad i=1,2, \cdots, d \\
\text { Dirichlet's bound } 1+1 / d
\end{gathered}
$$

$$
\left|\frac{p_{i}}{q}-\alpha_{i}\right| \leq \frac{1}{q^{1+\frac{1}{d}}}
$$

Jacobi-Perron algorithm (1868-1907)

Consider the Jacobi-Perron algorithm. Its projective version is defined on the unit square $[0,1]^{2}$ by

$$
(x, y) \mapsto\left(\frac{y}{x}-\left\lfloor\frac{y}{x}\right\rfloor, \frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor\right)=\left(\left\{\frac{y}{x}\right\},\left\{\frac{1}{x}\right\}\right) .
$$

With $x=b / a, y=c / a$, its linear version is defined on the positive cone $\left\{(a, b, c) \in \mathbb{R}^{3} \mid 0<b, c<a\right\}$ by

$$
(a, b, c) \mapsto\left(a_{1}, b_{1}, c_{1}\right)=(b, c-\lfloor c / b\rfloor b, a-\lfloor a / b\rfloor b) .
$$

Set $C=\lfloor c / b\rfloor, A=\lfloor a / b\rfloor$. One has
$\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{lll}A & 0 & 1 \\ 1 & 0 & 0 \\ C & 1 & 0\end{array}\right)\left(\begin{array}{l}a_{1} \\ b_{1} \\ c_{1}\end{array}\right)=\left(\begin{array}{lll}A & 0 & 1 \\ 1 & 0 & 0 \\ C & 1 & 0\end{array}\right)\left(\begin{array}{c}b \\ c-C b \\ a-A b\end{array}\right)$.

Theorem of Perron-Frobenius type

One considers an infinite product of matrices

$$
E_{1} \cdots E_{k} \cdots
$$

with entries in \mathbb{N}. One assumes that there exists a matrix B with strictly positive entries s.t. there exist $i_{1}<j_{1}<\cdots<i_{k}<j_{k}$ s.t.

$$
B=E_{i_{1}} \cdots E_{j_{1}}, \cdots, B=E_{i_{k}} \cdots E_{j_{k}}, \cdots
$$

Then, the intersection of the cones

$$
\cap_{k} E_{1} \cdots E_{k}\left(\mathbb{R}_{+}^{n}\right)
$$

is unidimensional [Furstenberg]
\sim Convergence

Convergence for simultaneous approximations

$$
M_{1} \cdots M_{n}=\left(\begin{array}{ccc}
q_{1}^{(n)} & \cdots & q_{d+1}^{(n)} \\
p_{1,1}^{(n)} & \cdots & p_{1, d+1}^{(n)} \\
& \cdots & \\
p_{d, 1}^{(n)} & \cdots & p_{d, d+1}^{(n)}
\end{array}\right) \sim\left(\frac{p_{1, j}^{(n)}}{q_{j}^{(n)}}, \cdots, \frac{p_{d, j}^{(n)}}{q_{j}^{(n)}}\right)
$$

Weak convergence Convergence in angle

$$
\lim _{n \rightarrow+\infty}\left(\frac{p_{1, j}^{(n)}}{q_{j}^{(n)}}, \cdots, \frac{p_{d, j}^{(n)}}{q_{j}^{(n)}}\right)=\left(\alpha_{1}, \cdots, \alpha_{d}\right)
$$

Strong convergence Convergence in distance

$$
\lim _{n \rightarrow+\infty}\left|q_{j}^{(n)} \alpha_{i}-p_{i, j}^{(n)}\right|=0 \text { for all } i, j
$$

Convergence of Jacobi-Perron algorithm

Theorem [Broise-Guivarc'h'99] There exists $\delta>0$ s.t. for almost every (α, β)

$$
\left|\alpha-p_{n} / q_{n}\right|<\frac{1}{q_{n}^{1+\delta}}, \quad\left|\beta-r_{n} / q_{n}\right|<\frac{1}{q_{n}^{1+\delta}}
$$

where p_{n}, q_{n}, r_{n} are produced by either by Jacobi-Perron algorithm

What is the dependence of δ with respect to the number of parameters?

Lyapunov exponents

We consider a MCF algorithm given by a piecewise constant transformation

$$
A:[0,1]^{d} \rightarrow \mathrm{GL}(d+1, \mathbb{Z})
$$

with its associated transformation $\left([0,1]^{d}, T_{A}, \nu\right)$. We assume ν ergodic. Let

$$
A^{(n)}(u)=A(u) A\left(T_{A} u\right) \cdots A\left(T_{A}^{n-1} u\right)
$$

We assume $\log ^{+}\|A(x)\|$ is ν-integrable $\left(\log ^{+}(a)=\max \{\log a, 0\}\right.$ for $a>0$).

Then by the Oseledets Theorem the following Lyapunov exponents $\lambda_{k}, 1 \leq k \leq d+1$, exist

$$
\lambda_{1}+\cdots+\lambda_{k}=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\wedge^{k} A^{(n)}(u)\right\| \quad \text { for } \nu \text {-a.e. } u \in \Delta .
$$

Lyapunov exponents

$$
A_{n}(x)=\left(\begin{array}{ll}
q_{n} & q_{n-1} \\
p_{n} & p_{n-1}
\end{array}\right)
$$

Theorem For a.e. x,

$$
\lim \frac{1}{n} \log q_{n}=\frac{\pi^{2}}{12 \log 2}=1.18 \cdots=\lambda_{1}
$$

λ_{1} is the first Lyapunov exponent
First Lyapunov exponent $=$ "log largest eigenvalue" \sim size of the matrices/convergents $A_{n}(x) \sim q_{n}(x) \sim e^{\lambda_{1} n}$

Number of steps in Euclid's algorithm $=$ size/ log eigenvalue

$$
\log N / \lambda_{1}
$$

Second Lyapunov exponent $=$ "log of the second eigenvalue" \sim measures the distance between column vectors

Lyapunov exponents

First Lyapunov exponent $=\log$ largest eigenvalue \leadsto size of the matrices/convergents $M^{(n)}(\boldsymbol{\alpha}) \sim q_{i}^{n}(\boldsymbol{\alpha}) \sim e^{\lambda_{1} n}$

Second Lyapunov exponent $=$ "log of the second eigenvalue" \sim measures the distance between column vectors

$$
M^{(n)}(\boldsymbol{\alpha})=\left(\begin{array}{ccc}
q_{1}^{(n)} & \cdots & q_{d+1}^{(n)} \\
p_{1,1}^{(n)} & \cdots & p_{1, d+1}^{(n)} \\
p_{d, 1}^{(n)} & \cdots & p_{d, d+1}^{(n)}
\end{array}\right)
$$

Lyapunov exponents

First Lyapunov exponent $=\log$ largest eigenvalue \leadsto size of the matrices/convergents $M^{(n)}(\boldsymbol{\alpha}) \sim q_{i}^{n}(\boldsymbol{\alpha}) \sim e^{\lambda_{1} n}$

Second Lyapunov exponent $=$ " \log of the second eigenvalue" \sim measures the distance between column vectors

$$
M^{(n)}(\boldsymbol{\alpha})=\left(\begin{array}{ccc}
q_{1}^{(n)} & \cdots & q_{d+1}^{(n)} \\
p_{1,1}^{(n)} & \cdots & p_{1, d+1}^{(n)} \\
p_{d, 1}^{(n)} & \cdots & p_{d, d+1}^{(n)}
\end{array}\right)
$$

$$
\begin{aligned}
& \lambda_{1} \leftrightarrow \log \left\|M^{(n)}\right\| \\
& \lambda_{1}+\lambda_{2} \leftrightarrow \log \left\|\wedge^{2} M^{(n)}\right\| \leftrightarrow \log \left\|c_{i}^{(n)} \wedge c_{j}^{(n)}\right\| \\
& \lambda_{2} \text { distance between column vectors }
\end{aligned}
$$

Dirichlet's bound $1+1 / d$ vs. $1-\lambda_{2} / \lambda_{1}$

Higher-dimensional case

Numerical experiments indicate that classical multidimensional continued fraction algorithms seem to cease to be strongly convergent for high dimensions. The only exception seems to be the Arnoux-Rauzy algorithm which, however, is defined only on a set of measure zero [B.-Steiner-Thuswaldner]

Higher-dimensional case

Numerical experiments indicate that classical multidimensional continued fraction algorithms seem to cease to be strongly convergent for high dimensions. The only exception seems to be the Arnoux-Rauzy algorithm which, however, is defined only on a set of measure zero [B.-Steiner-Thuswaldner]

d	$\lambda_{2}\left(A_{J}\right)$	$1-\frac{\lambda_{2}\left(A_{J}\right)}{\lambda_{1}\left(A_{J}\right)}$	d	$\lambda_{2}\left(A_{J}\right)$	$1-\frac{\lambda_{2}\left(A_{J}\right)}{\lambda_{1}\left(A_{J}\right)}$
2	-0.44841	1.3735	7	-0.02819	1.0243
3	-0.22788	1.1922	8	-0.01470	1.0127
4	-0.13062	1.1114	9	-0.00505	1.0044
5	-0.07880	1.0676	10	+0.00217	0.9981
6	-0.04798	1.0413	11	+0.00776	0.9933

Table: Heuristically estimated values for the second Lyapunov exponent and the uniform approximation exponent of the Jacobi-Perron Algorithm

Let $G L(n, \mathbb{Z})$ stand for the set of matrices with integer entries and determinant ± 1.

Theorem [Duke-Rudnick-Sarnak] One has

$$
\left\{M \in G L(n, \mathbb{Z}),\left|m_{i j}\right| \leq T\right\} \sim c_{n} T^{n^{2}-n}
$$

How to generate "random matrices" in $G L_{n}(\mathbb{Z})$?

How does LLL produce good approximations?
Let

$$
M_{t}:=\left(\begin{array}{lllll}
1 & 0 & \cdots & 0 & -\alpha_{1} \\
0 & 1 & \cdots & 0 & -\alpha_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1 & -\alpha_{d} \\
0 & \cdots & \cdots & 0 & t
\end{array}\right)
$$

How does LLL produce good approximations?
Let

$$
M_{t}:=\left(\begin{array}{lllll}
1 & 0 & \cdots & 0 & -\alpha_{1} \\
0 & 1 & \cdots & 0 & -\alpha_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1 & -\alpha_{d} \\
0 & \cdots & \cdots & 0 & t
\end{array}\right)
$$

LLL produces in polynomial time a vector b_{1} such that

$$
\left\|b_{1}\right\| \leq 2^{d / 4} \operatorname{det}\left(M_{t}\right)^{1 / d+1}=2^{d / 4} t^{1 / d+1}
$$

One has

$$
\begin{gathered}
b_{1}=\left(p_{1}-q \alpha_{1}\right) e_{1}+\cdots+\left(p_{d}-q \alpha_{d} e_{d}\right)+q t e_{d+1} \\
\forall i, \quad\left|p_{i}-\alpha_{i} q\right| \leq 2^{d / 4} t^{1 / d+1} \quad \text { and } \quad q t \leq 2^{d / 4} t^{1 / d+1} \\
\sim \forall i, \quad\left|p_{i}-\alpha_{i} q\right| \leq 2^{(d+1) / 4} 1 / \boldsymbol{q}^{1 / d}
\end{gathered}
$$

